ADVANTEST CORPORATION


MANUAL NUMBER EHO1 9205

This product has been discontinued.
The Operation Manual is provided by ADC Corporation under the agreement with Advantest Corporation.

Before reselling to other corporations or re-exporting to other countries, you are required to obtain permission from both the Japanese Government under its Export Control Act and the U.S. Government under its Export Control Law.

## TABLE OF CONTENTS

SECTION 1 GENERAL INFORMATION ..... 1-1
1-1. TR2731/2741 SERIES INTRODUCTION AND FEATURES ..... 1-1
1-2. CONFIGURATION ..... 1-2
1-3. GENERAL PRECAUTIONS ..... 1-5
1-3-1. Unpacking and Transportation ..... 1-5
1-3-2. Preparations and General Precautions ..... 1-6
SECTION 2 TR2741 SENSOR TERMINAL ..... 2-1
2-1. GENERAL ..... 2-1
2-2. SPECIFICATIONS ..... 2-3
2-3. PANEL DESCRIPTION ..... 2-8
2-3-1. Front Panel Description ..... 2-9
2-3-2. Rear Panel Description ..... 2-9
2-3-3. Terminal Board ..... 2-11
2-4. PRINCIPLES OF OPERATION ..... 2-14
2-4-1. Outlines of Sensor Terminal Operation ..... 2-14
2-4-2. Calibration ..... 2-18
2-4-3. Operation and Data Transfer ..... 2-21
2-5. OPERATING INSTRUCTIONS ..... 2-23
2-5-1. Connection ..... 2-23
2-5-2. Connecting Input Signal Leads to the Thermocouple/ Voltage Measurement Unit ..... 2-26
2-5-3. Connecting Input Signal Leads to the Platinum RTD/ Voltage Measurement Unit ..... 2-39
2-5-4. Number of Attachable Sensor Terminals vs. Cable Lengths ..... 2-48
2-5-5. Noise Interference Countermeasures ..... 2-51
SECTION 3 TR2731 COMPUTING DATA LOGGER ..... 3-1
3-1. GENERAL ..... 3-1
3-2. SPECIFICATIONS ..... 3-2
3-3. PANEL DESCRIPTION ..... 3-10
3-3-1. Front Panel Description ..... $3-10$
3-3-2. Rear Panel Description ..... 3-19
3-4. OPERATION OUTLINE ..... 3-21
3-4-1. Scan Mode ..... 3-21
3-4-2. Interval Mode ..... 3-24
3-4-3. Single-User and Multi-User Log Scan Modes ..... 3-26
3-5. BASIC PROGRAMMING SUPPORT (SCAN FORMAT) ..... 3-26
3-5-1. Log Interval Mode (LOG INTL) ..... 3-29
3-5-2. Scan Channel Mode (SCAN CH.) ..... 3-41
3-5-3. Monitor Interval Mode (MONIT. INTL) ..... 3-46
3-5-4. Filter Mode (FILTER) ..... 3-51
3-5-5. Automatic Start/Stop Mode (AUTO TIME) ..... 3-52
3-5-6. Label (LABEL) ..... 3-55
3-5-7. Clock Mode (CLOCK) ..... 3-57
3-5-8. Call Channel Mode (CALL CH.) ..... 3-59
3-6. BASIC PROGRAMMING PROCEDURE (FUNCTION) ..... 3-60
3-6-1. Group Channel (CHANNEL) ..... 3-61
3-6-2. Measurement Range (RANGE) ..... 3-66
3-6-3. Scaling Coefficient (SCALE) ..... 3-71
3-6-4. Unit (UNIT) ..... 3-72
3-6-5. Arithmetic Modes (MODE) ..... 3-74
3-6-6. Secondary Arithmetic Operation (AUX. FUNCTION) ..... 3-77
3-7. BASIC PROGRAMMING PROCEDURE (ALARM: Alarm group) ..... 3-80
3-7-1. Group Channel (CHANNEL) ..... 3-82
3-7-2. Upper Limit Value (HIGH) ..... 3-86
3-7-3. Lower Limit Value (LOW) ..... 3-87
3-7-4. Alarm Comment ..... 3-88
3-8. OPERATING INSTRUCTIONS ..... 3-90
3-8-1. Preparations ..... 3-90
3-8-2. Operation Check after Power On ..... 3-90
3-8-3. Basic Operating Procedures ..... 3-92
3-8-4. Specifications Required for Measurement ..... 3-97
3-8-5. Programming and Operation Examples ..... 3-102
3-9. PRINCIPLES OF OPERATION ..... 3-113
3-9-1. Single User Log Scan ..... 3-113
3-9-2. Multi-user Log Scan ..... 3-116
3-9-3. Monitor Scan and Call Channel ..... $3-120$
3-9-4. Upper/Lower Limit Identification for Log Scan and Automatic Log Start by Monitor Scan ..... 3-126
3-9-5. Other Instrumentation Support Functions ..... 3-130
3-9-6. Data Output ..... 3-134
3-9-7. Power Failure Countermeasures ..... 3-137
3-10. COMPUTING FUNCTIONS ..... 3-138
3-10-1. Computing Function Outline ..... 3-138
3-10-2. Linear Scaling Operation and Engineering Unit Conversion ..... 3-141
3-10-3. Primary Arithmetic Operation ..... 3-143
3-10-4. Secondary Arithmetic Operation ..... 3-149
3-10-5. Upper/Lower Limit Identification and Alarm Comment Output ..... 3-151
3-10-6. Contact Input and Digital Input Processing ..... 3-153
3-11. MAINTENANCE AND CHECK ..... 3-154
3-11-1. Precautions for Maintenance and Repair ..... 3-154
3-11-2. Self-Diagnosis Function ..... 3-154
3-11-3. Routine Operation Check Procedure ..... 3-158
3-11-4. Problem Determination ..... 3-161
3-11-5. Recording Paper Replacement Procedure ..... 3-169
3-11-6. The Fan Filter Cleaning ..... 3-171
3-11-7. Error Codes ..... 3-172
SECTION 4 TR2730-010 MEMORY/AUX. FUNCTION OPTION CARD ..... 4-1
4-1. GENERAL ..... 4-1
4-2. SPECIFICATIONS ..... 4-1
4-3. INSTALLATION PROCEDURE ..... 4-3
4-4. OPERATING PROCEDURE ..... 4-4
SECTION 5 TR2730-520 BCD OUTPUT/EXTERNAL CONTROL OPTION CARD ..... 5-1
5-1. GENERAL ..... 5-1
5-2. SPECIFICATIONS ..... 5-1
5-3. INSTALLATION PROCEDURE ..... 5-7
5-4. DESCRIPTION OF CARD PANEL ..... 5-9
5-5. INFORMATION OF DATA OUTPUT SEQUENCE ..... 5-10
5-6. INFORMATION OF EXTERNAL CONTROL FUNCTIONS ..... 5-12
5-7. OPERATING INSTRUCTIONS ..... 5-14
SECTION 6 TR2730-530 BCD INPUT OPTION CARD ..... 6-1
6-1 . GENERAL ..... 6-1
6-2. SPECIFICATIONS ..... 6-1
6-3. INSTALLATION PROCEDURE ..... 6-4
6-4. PANEL DESCRIPTION ..... 6-7
6-5. PRINCIPLES OF OPERATION ..... 6-8
6-6. DATA PROCESSING ..... 6-10
6-7. PROGRAMMING SUPPORT ..... 6-11
6-7-1. Boundary Channel Specification ..... 6-11
6-7-2. Scaling Specification ..... 6-13
6-7-3. Unit Specification ..... 6-14
SECTION 7 TR2730-540 RELAY OUTPUT OPTION CARD ..... 7-1
7-1. GENERAL ..... 7-1
7-2. SPECIFICATIONS ..... 7-1
7-3. INSTALLATION PROCEDURE ..... 7-3
7-4. PANEL DESCRIPTION ..... 7-6
7-5. PRINCIPLES OF OPERATION ..... 7-7
7-6. PROGRAMMING SUPPORT ..... 7-9
7-6-1. Group Boundary Channel Specification ..... 7-10
7-6-2. Limit Values and Contact Output Channel Specification ..... 7-14
7-7. SPECIAL APPLICATION PROCEDURE ..... 7-16
SECTION 8 TR2730-550 ANALOG OUTPUT OPTION CARD ..... 8-1
8-1. GENERAL ..... 8-1
8-2. SPECIFICATIONS ..... 8-1
8-3. INSTALLATION PROCEDURE ..... 8-2
8-4. PANEL DESCRIPTION AND CONNECTION ..... 8-5
8-4-1. Panel Description ..... 8-5
8-4-2. Connecting to External Units ..... 8-6
8-4-3. Output Polarity and Offset ..... 8-7
8-5. PRINCIPLES OF OPERATION ..... 8-9
8-6. PROGRAMMING SUPPORT ..... 8-11
8-6-1. Monitor Interval Specification ..... 8-11
8-6-2. Analog Output Channel Specification ..... 8-12
SECTION 9 TR2730-560 SERIAL DATA OUTPUT OPTION CARD ..... 9-1
9-1. GENERAL ..... 9-1
9-2. SPECIFICATIONS ..... 9-1
9-3. INSTALLATION PROCEDURE ..... 9-8
9-4. PANEL DESCRIPTION AND SWITCH SETTING ..... 9-10
9-5. OPERATING INSTRUCTIONS ..... 9-13
9-5-1. Single User Log Scan Data Output ..... 9-13
9-5-2. Multi-User Log Scan Data Output ..... 9. -18
9-5-3. Program Listing ..... 9-21
9-6. MODIFYING TO 20 mA CURRENT LOOP INTERFACE ..... 9-23
SECTION 10 TR2730-570 DATA BUFFER MEMORY OPTION CARD ..... 10-1
10-1. GENERAL ..... 10-1
10-2. SPECIFICATIONS ..... 10-1
10-3. INSTALLATION PROCEDURE ..... 10-4
10-4. PANEL DESCRIPTION ..... 10-6
10-5. PRINCIPLES OF OPERATION ..... 10-7
10-5-1. Data Buffering ..... 10-7
10-5-2. Data Rearrangement ..... 10-12
SECTION 11 TR2730-580 PULSE COUNTER OPTION CARD ..... 11-1
11-1. GENERAL ..... 11-1
11-2. SPECIFICATIONS ..... 11-1
11-3. INSTALLATION PROCEDURE ..... 11-2
11-4. PANEL DESCRIPTION ..... 11-4
11-5. PRINCIPLES OF OPERATION ..... 11-5
11-5-1. Counter Mode Operation ..... 11-5
11-5-2. Total Mode Operation ..... 11-6
11-6. INPUT CIRCUIT ..... 11-8
11-7. PROGRAMMING SUPPORT ..... 11-9
11-7-1. Boundary Channel Specification ..... 11-9
11-7-2. Scaling Specification ..... $11-10$
11-7-3. Unit Specification ..... 11-11
SECTION 12 TR2730-510 GPIB INTERFACE OPTION CARD ..... 12-1
12-1. GENERAL ..... 12-1
12-2. OUTLINE OF GPIB ..... 12-1
12-3. SPECIFICATIONS ..... 12-3
12-3-1. GPIB Specifications ..... 12-3
12-3-2. Interface Functions ..... 12-5
12-3-3. Talker Format (Data Output Format) ..... 12-5
12-3-4. Listener Format (Program Code) ..... 12-10
12-3-5. Service Request ..... 12-19
12-3-6. Device Trigger Function ..... 12-21
12-3-7. Device Clear Function ..... 12-21
12-4. INSTALLATION PROCEDURE ..... 12-22
12-5. GPIB HANDLING PROCEDURE ..... 12-24
12-5-1. System Configuration ..... 12-24
12-5-2. Panel Description ..... 12-25
12-6. GENERAL PRECAUTIONS FOR GPIB OPERATIONS ..... 12-28
12-7. OUTLINE OPERATION FLOW ..... 12-30
12-8. PROGRAMMING SUPPORT AND PRECAUTIONS ..... 12-31
12-9. PROGRAMMING EXAMPLES ..... 12-34
SECTION 13 TROUBLESHOOTING ..... 13-1
13-1. GENERAL ..... 13-1
13-2. PRELIMINARY PREPARATIONS ..... 13-1
13-3. GENERAL PRECAUTIONS ..... 13-2
13-4. FAILURE DIAGNOSIS ..... 13-4
13-5. PRINCIPLES OF THE TR2741 SENSOR TERMINAL OPERATION ..... 13-6
13-5-1. Operation of Component Parts ..... 13-6
13-6. TR2741 TROUBLESHOOTING ..... 13-16
13-6-1. Flowchart Summary ..... 13-16
13-6-2. Detailed Flowchart ..... 13-17
13-7. PRINCIPLES OF THE TR2731 COMPUTING DATA LOGGER OPERATION ..... 13-31
13-7-1. Description of Each Section Operation ..... 13-31
13-7-2. Outline of Operation ..... 13-34
13-8. TR2731 TROUBLESHOOTING ..... 13-36
SECTION 14 CALIBRATION ..... 14-1
14-1. GENERAL ..... 14-1
14-2. GENERAL PRECAUTIONS ..... 14-1
14-3. PRELIMINARY PREPARATIONS ..... 14-2
14-4. TR2741 CALIBRATION PRECAUTIONS ..... 14-3
14-5. CALIBRATION LOCATIONS ..... 14-4
14-6. CALIBRATION PROCEDURES ..... 14-5
14-6-1. Offset Adjustment ..... 14-5
14-6-2. Timer Adjustment ..... 14-5
14-6-3. Reference Voltage Adjustment ..... 14-6
14-6-4. Zero Point and Full Scale Adjustments ..... 14-6
14-6-5. Power Suppy Current Adjustment (TR2741C/D/E types) ..... 14-8
14-6-6. Internal Reference Junction Compensation Circuit Adjustment (TR2741A/B/E types) ..... 14-8
14-6-7. Shorting Socket and Switch Settings ..... 14-9
SECTION 15 PARTS LIST ..... 15-1
15-1. OUTLINE ..... 15-1
15-2. SYMBOLS AND ABBREVIATIONS ..... 15-1
SECTION 16 LOCATIONS \& DIAGRAMS ..... $16-1$
APPENDIX ABBREVIATION LIST ..... A - 1

1-1. TR2731/2741 SERIES INTRODUCTION AND FEATURES

The TR2731/2741 Computing Data Logger with versatile, flexible processing capability provides high-speed, high-precision measurement of a wide range of physical and electrical data by combining appropriate sensor terminals and optional input cards. The instrument can be configured in many ways to assure a broad application. The principle features are as follows:
(1) High-speed and high-precision measurement: The high-precision, high-speed A/D conversion technique enables measurements on up to 320 channels in only four seconds, with resolutions of $1 \mu V$ for $D C$ voltage measurement, $0.1^{\circ} \mathrm{C}$ for temperature measurement using thermocouples, and $0.01^{\circ} \mathrm{C}$ for temperature measurement using platinum RTDs (Resistive Temperature Detector).
(2) Distributed configuration system: Up to four sensor terminals can be distributed to install remotely from the mainframe. This permits close sensor connections to the measurement objects. The digital transmission method ensures high noise rejection and allows the cable length of up to 500 meters from the mainframe for remote signal connections.
(3) Intermixed inputs acceptability: The instruments can accept up to 8 types of thermocouples, 3 ranges of platinum RTDs, 4 ranges of DC voltage, contact signals, digital data, pulse trains, and so forth in a combined form.
(4) Various data logging modes: Data logging mode is selectable from four different scan modes, multi-user mode (permitting up to four users to simultaneously access the instrument), input skip, high-speed buffering, and some other modes. This allows the user to selectively log only his necessary data.
(5) Ample arithmetic functions: The eight standard arithmetic functions such as scaling, upper and lower limits identification and differential calculation between two or more channels are provided. In addition, nine types of secondary arithmetic operation functions are optionally available.
(6) Monitor and alarm functions: The monitor and alarm functions include the scanning monitor (which operates independently of regular logging), alarm relay output, alarm print, continuous single-channel monitoring, alarm comment, and auto-restart function.
(7) Simple programming: The item-independent programming keys and large fluorescent display facilitate programming of measurement parameters. The direct item specification and automatic rearrangement functions permit easy programming, insertion, and deletion of measurement parameters even for grouped items. Furthermore, external programming through GPIB interface is also enabled.
(8) Expandability assured by various options: The mainframe has four slots to accommodate optional I/O cards. The eight optional cards such as GPIB, parallel/serial data transfer, analog output, data buffer memory, etc. can be installed to match application requirements.

1-2. CONFIGURATION

The configuration of the TR2731/2741 Series Computing Data Logger is shown below for selection of the optimum system configuration:
TR2731 Computing Data Logger mainframe
TR2741A Sensor Terminal (40 channels of thermocouple/DC voltage inputs)
TR2741B Sensor Terminal (80 channels of thermocouple/DC voltage inputs)

TR2741C Sensor Terminal (20 channels of platinum RTD/DC voltage inputs)

TR2741D Sensor Terminal (40 channels of platinum RTD/DC voltage inputs)

TR2741E Sensor Terminal (40 channels of thermocouple/DC voltage inputs or 20 channels of platinum RTD/DC voltage inputs)

```
TR2730-010 Memory/Aux. Function option card
TR2730-510 GPIB Interface option card
TR2730-520 BCD Output/External Control option card
TR2730-530 BCD Input option card
TR2730-540 Relay Output option card
TR2730-550 Analog Output option card
TR2730-560 Serial Data Output option card
TR2730-570 Data Buffer Memory option card
TR2730-580 Pulse Counter option card
```

Figure 1-1 shows the configuration of the TR2731/2741, and Figure 1-2 gives a selection guide.


Fig. 1-1 TR2731/2741 system configuration
TR2730-510


## 1-3. GENERAL PRECAUTIONS

1-3-1. Unpacking and Transportation

Each instrument is carefully inspected and packed in a shock-absorbing package. Upon receiving the instrument, an examination should be made for the following points:
(1) Unpack and remove the instrument.
(2) Check the instrument for any damage sustained in transit, especially for the panel switches and terminals.
(3) Check the quantities and specifications of the supplied accessories against the following tables:

TR2731

| Item | Product code | Quantity |
| :--- | :--- | :---: |
| Recording paper | $9993-013$ | 5 |
| Number sticker (to be stuck on TR2741) |  | 2 |
| Fuse (EAWK 2.5 A)* |  | 2 |
| Operation \& Maintenance Manual |  | 1 |

* 1.25 A for $200,220,240$ Vac

TR2741

| Item | Product code | Quantity |
| :--- | :--- | :---: |
| Interconnecting cable (1 m) | MC-76-01 | 1 |
| Fuse (EAWK 0.4 A) |  | 2 |
| Plug (JCP-AX002JX01-1) | SI-7502 | 1 |

If damage is found or any accessory part is missing, notify your nearest ADVANTEST representative.
(4) Transportation

If it should become necessary to repack the instrument for transportation, use the original packing material. If the original packing material is lost or discarded, pack the instrument as follows:
a. Wrap the instrument with a vinyl sheet.
b. Pack the instrument in a cardboard box having a thickness of more than 5 mm , with filler placed all around the instrument to a thickness of more than 50 mm .
c. Place accessories on filler, then cover them with additional filler. Close and bind the cardboard box.

1-3-2. Preparations and General Precautions
(1) Battery charging

When the TR2731 is switched on after initial installation or after it is left unused for more than one month, "LOW BAT." may be displayed for approximately three seconds. This message indicates that the internal battery requires recharging and hence the instrument must remain powered for more than eight hours for recharging. If the instrument is operated with its battery uncharged, part or all of the memory contents will be destroyed when the instrument is switched off.
(2) Power supply

The AC line voltage at which the instrument should be operated is indicated near the power cable outlet on the rear panel. The allowable power voltage is $100,120,200,220 \mathrm{Vac} \pm 10 \%$ or $240 \mathrm{Vac}+4 \%$ with the frequency of 50 or 60 Hz . The line frequency can be switched between 50 and 60 Hz with a $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ selector switch provided on the rear panel of the TR2741 Sensor Terminal. Before connecting the power cable to the instrument, make sure that the POWER switch is set to OFF. If a private power generator or DC-AC inverter is to be used as a power source, pay attention to the output frequency displacement and waveform. (Since wave is required.)
(3) Power cable

The power cable has a 3-prong plug and the round prong in the center is for grounding.
If the KPR-13 plug adapter is used for power connection, make sure to connect the ground lead (Figure 1-3) of the adapter or the GND terminal on the rear panel to the ground.


Fig. 1-3 Power cable plug and adapter
(4) Fuse replacement

The power line fuse is contained in a fuse holder on the TR2731 rear panel. If fuse replacement is required, turn the fuse holder cap in the arrow direction and replace it with the same rating fuse as the original one.

On TR2741, the line fuse is placed on its internal circuit board (Figure 1-4). The fuse can be pulled out from or pushed down into its metal holder.

## CAUTION

Before replacing the fuse, make sure to disconnect the power cable from the AC outlet.


Fig. 1-4 TR2741 line fuse location
(5) Chassis grounding

To prevent noise interference and electrical shock, ground the GND terminals on both TR2731 and TR2741 rear panel with a thick copper wire.
(6) Line noise

The instruments are insensitive to AC power line noise. If a problem occurs due to power line noise, however, use a noise filter in the primary power circuit.
(7) Operating environment

The instruments should be operated in a place free from direct sunlight, corrosive gas, and excessive dust. Do not expose the instrument to natural wind, or cool/hot air flow from air conditioning units as this may cause a temperature difference between input terminals and hence a measurement error. The ambient temperature should be between $0^{\circ} \mathrm{C}$ and $+40^{\circ} \mathrm{C}$ for TR2731, and between $0^{\circ} \mathrm{C}$ and $+50^{\circ} \mathrm{C}$ for TR2741 with a relative humidity of less than $85 \%$ for both models.
(8) Ventilation (TR2731 only)

The TR2731 is forced air-cooled with an inhaling cooling fan on the rear panel. And the air is exhausted through the ventilators provided in the top and bottom covers. To ensure adequate ventilation, allow sufficient space around the instrument.
(9) Shock and vibration The instrument contains precision mechanical units such as a printer. It should not be operated under excessive mechanical shock or constant vibration.
(10) Storage

The storage temperature range for TR2731 should be between $-20^{\circ} \mathrm{C}$ and $+60^{\circ} \mathrm{C}$, with relative humidity of $90 \%$ or lower, and that for TR2741 should be between $-25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$, with relative humidity of $95 \%$ or lower. When the instruments are to be left unused for a long period of time, wrap them with a vinyl sheet or store in a cardboard box to keep in a dry and cool place free from direct sunlight.
(11) Recording paper

Avoid the following treatment for recording paper:
a. Storage in an environment of high temperature or humidity.
b. Exposure to direct sunlight for a long period of time.
c. Use of solvent adhesives (such as rubber bonds, thinner bonds, PIT stick glue, etc.) for splicing.
d. Contact with diazotized copy paper immediately after recording.
e. Contact with plastic film containing plasticizer over a long period of time.
(12) Before measurement operation

Before attempting the operation of the instrument, be sure to carefully read 3-8 "Operating Instructions".


## SECTION 2

TR2741 SENSOR TERMINAL

2-1. GENERAL

The TR2741 Sensor Terminal is a compact input terminal board which can be installed independently of the TR2731 Computing Data Logger. It contains a high-precision integration $A / D$ converter of 20 samples per second and uses microprocessor to control calibration, room temperature compensation, linearization, and error detection, etc. Up to four sensor terminals can be attached to the TR2731 Computing Data Logger. Upon receiving a command from the TR2731 mainframe, attached sensor terminals simultaneously start scanning and transfer processed data to the TR2731 data logger. The sensor terminal has the following features:
(1) High-speed and high-precision measurement In addition to high-speed data logging of 20 samples per second, high-resolutions of $1 \mu \mathrm{~V}$ for DC voltage measurements, $0.01^{\circ} \mathrm{C}$ for temperature measurements using platinum RTDs, and $0.1^{\circ} \mathrm{C}$ for temperature measurements using thermocouples is attained.
(2) Distributed configuration

Data and commands are transferred to and from remote sensor terminals in digitally-coded, bit-serial format via a pair of signal lines. This transmission method exhibits higher noise rejection and better data reliability than the low-level analog transmission method. The digital transmission method does not require high quality cables for transmission paths and permits a maximum cable length of 500 meters (up to two output ports are provided).
(3) Intermixed inputs handling capability

Each TR2741 can handle up to 16 types of intermixed sensor outputs. Thermocouples: $T(C C), J(I C), E(C R C), K(C A), S(P R 10 \%), R(P R 13 \%)$, B(PR30\%), PR12.8\%

Platinum RTD : $100 \Omega$ 3-wire, 4-wire, and 4-wire high resolution Voltage input: $\pm 20 \mathrm{mV}, \pm 200 \mathrm{mV}, \pm 2 \mathrm{~V}, \pm 20 \mathrm{~V}$ Contact input: Relay make/break status detection
(4) High-speed measurement

High-speed measurement of up to 320 channels per 4 seconds ensures real time processing of data logging.
(5) Five types of sensor terminals

The sensor terminal can accept up to 40 groups of various types of input signals. Five models are available depending on input signal types or number of channels:

| Configuration | Thermocouple/voltage <br> measurement <br> Number of units <br> $(40$ channels/unit) | Platinum RTD/voltage <br> measurement <br> Number of units <br> $(40$ channels/unit $)$ | Total <br> channels |
| :---: | :--- | :--- | :---: |
| TR2741A | 1 (40 channels) | - | 40 |
| TR2741B | $2(40$ channels $)$ | - | 80 |
| TR2741C | - | $1(20$ channels) | 20 |
| TR2741D | - | $2(20$ channels $)$ | 40 |
| TR2741E | $1(40$ channels $)$ | $1(20$ channels $)$ | 60 |

The thermocouple/voltage measurement unit is capable of measuring the following items:

Up to 8 types of thermocouples, 4 ranges of voltage and contact signal.

The platinum RTD/voltage measurement unit is capable of measuring the following items:

Up to 3 ranges of platinum RTDs and 4 ranges of voltage.
(6) The sensor terminal consumes only a very little power and is supplied from the TR2731 mainframe. It can, therefore, be installed in sites where commercial AC power is not available.

## 2-2. SPECIFICATIONS

## Configuration and Input Channels

The following five types of sensor terminals are configured with two types of terminal board units:

| Configuration <br> Model | Thermocouple/voltage <br> measurement units | Platinum RTD/voltage <br> measurement units | Total <br> channels |
| :---: | :---: | :---: | :---: |
| TR2741A | 1 | - | 40 |
| TR2741B | 2 | - | 80 |
| TR2741C | - | 1 | 20 |
| TR2741D | - | 2 | 40 |
| TR2741E | 1 | 1 | 60 |

Note: Each sensor terminal configuration is not modifiable after delivery.

## Thermocouple/Voltage Measurement Unit Specifications

Input signal types:
Thermocouple $: T(C C), J(I C), E(C R C), K(C A), S(P R 10 \%), R(P R 13 \%)$, B(PR30\%), PR12.8\% (All comply with JIS Standard C1 602-1981.)

DC voltage $: \pm 20 \mathrm{mV}, \pm 200 \mathrm{mV}, \pm 2 \mathrm{~V}, \pm 20 \mathrm{~V}$
Non-voltage contact input: ON for $2 \mathrm{k} \Omega$ or less, $O F F$ for $30 \mathrm{k} \Omega$ or more. Detectable current: Approx. $42 \mu \mathrm{~A}$ with a pulse width of approx. $300 \mu \mathrm{~s}$

| Input channels | : 40 channels/unit |
| :---: | :---: |
| Scanning speed | : $50 \mathrm{~ms} / \mathrm{Channel}$ |
| Input system | : 2-wire switching system using electromechanical |
|  | relays. |
| Input terminals | : Top-plane type, two-terminals two-wire system using screw (M4x8) termination |
| Input impedance | : $50 \mathrm{M} \Omega$ or more (approx. $11 \mathrm{M} \Omega$ for 20 V range) |
| Thermocouple fau | detection: Normal if $2 \mathrm{k} \Omega$ or less; |
|  | Error if $30 \mathrm{k} \Omega$ or more |
|  | Detectable current: Approx. $42 \mu \mathrm{~A}$ with a pulse width |
|  | of approx. $300 \mu s$ |

Measurement range and accuracy: Guaranteed for six months under an ambient temperature of $+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with relative humidity of $85 \%$ or lower

| Tempera- <br> ture <br> measure- <br> ment | Type | Measurement range <br> ( ${ }^{\circ} \mathrm{C}$ ) | $\begin{aligned} & \text { Resolu- } \\ & \text { tion ( }{ }^{\circ} \mathrm{C} \text { ) } \end{aligned}$ | Measurement accuracy $\pm$ (\% of $\left.r d g+{ }^{\circ} \mathrm{C}\right)$ | Temperature coefficient $\begin{aligned} & \left(0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C}\right) \\ & \pm\left(\% \text { of } \mathrm{rdg}+{ }^{\circ} \mathrm{C}\right) /{ }^{\circ} \mathrm{C} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} \mathrm{T} \\ (\mathrm{CC}) \end{gathered}$ | $\begin{array}{r} -270.0 \text { to }-250.0 \\ -250.0 \text { to }-200.0 \\ -200.0 \text { to } r \\ 0.0 \text { to }+400.0 \end{array}$ | 0.1 | $\begin{aligned} & \pm(0.6+4.0) \\ & \pm(0.1+1.0) \\ & \pm(0.05+0.5) \\ & \pm(0.03+0.3) \end{aligned}$ | $\begin{aligned} & \pm(0.0393+0.0010) /{ }^{\circ} \mathrm{C} \\ & \pm(0.0064+0.0010) /{ }^{\circ} \mathrm{C} \\ & \pm(0.0028+0.0010) /{ }^{\circ} \mathrm{C} \\ & \pm(0.0015+0.0010) /{ }^{\circ} \mathrm{C} \end{aligned}$ |
|  | $\begin{gathered} \mathrm{J} \\ (\mathrm{IC}) \end{gathered}$ | $\begin{array}{r} -210.0 \text { to } 0.0 \\ 0.0 \text { to }+1200.0 \end{array}$ | 0.1 | $\begin{aligned} & \pm(0.05+0.5) \\ & \pm(0.03+0.3) \end{aligned}$ | $\begin{aligned} & \pm(0.0029+0.0008) /{ }^{\circ} \mathrm{C} \\ & \pm(0.0013+0.0008) /{ }^{\circ} \mathrm{C} \end{aligned}$ |
|  | $\begin{gathered} E \\ (\mathrm{CRC}) \end{gathered}$ | $\begin{array}{r} -270.0 \text { to }-250.0 \\ -250.0 \text { to }-200.0 \\ -200.0 \text { to } r \\ 0.0 \text { to }+1000.0 \end{array}$ | 0.1 | $\begin{aligned} & \pm(0.6+3.0) \\ & \pm(0.1+0.7) \\ & \pm(0.05+0.5) \\ & \pm(0.03+0.3) \end{aligned}$ | $\begin{aligned} & \pm(0.0352+0.0007) /{ }^{\circ} \mathrm{C} \\ & \pm(0.0059+0.0007) /{ }^{\circ} \mathrm{C} \\ & \pm(0.0024+0.0007) /{ }^{\circ} \mathrm{C} \\ & \pm(0.0013+0.0007) /{ }^{\circ} \mathrm{C} \end{aligned}$ |
|  | $\begin{gathered} \mathrm{K} \\ (\mathrm{CA}) \end{gathered}$ | $\begin{array}{r} -270.0 \text { to }-226.0 \\ -226.0 \text { to }-200.0 \\ -200.0 \text { to } r \\ 0.0 \text { to }+1372.0 \end{array}$ | 0.1 | $\begin{aligned} & \pm(1+6.0) \\ & \pm(0.07+0.7) \\ & \pm(0.05+0.5) \\ & \pm(0.03+0.3) \end{aligned}$ | $\begin{aligned} & \pm(0.0553+0.0012) /{ }^{\circ} \mathrm{C} \\ & \pm(0.0042+0.0012) /{ }^{\circ} \mathrm{C} \\ & \pm(0.0028+0.0012) /{ }^{\circ} \mathrm{C} \\ & \pm(0.0013+0.0012) /{ }^{\circ} \mathrm{C} \end{aligned}$ |
|  | $\underset{(P R 10 \%)}{S}$ | $\begin{array}{r} -\quad 50.0 \text { to } 0.0 \\ 0.0 \text { to }+538.0 \\ +538.0 \text { to }+1769.0 \end{array}$ | 0.1 | $\begin{aligned} & \pm(0.03+1.4) \\ & \pm(0.01+1.0) \\ & \pm(0.03+0.6) \end{aligned}$ | $\begin{aligned} & \pm(0.0067+0.0074) /{ }^{\circ} \mathrm{C} \\ & \pm(0.0018+0.0074) /{ }^{\circ} \mathrm{C} \\ & \pm(0.0010+0.0040) /{ }^{\circ} \mathrm{C} \end{aligned}$ |
|  | $\begin{gathered} R \\ (P R 13 \%) \end{gathered}$ | $\begin{array}{r} -\quad 50.0 \text { to } 0.0 \\ 0.0 \text { to }+338.0 \\ +338.0 \text { to }+1769.0 \end{array}$ | 0.1 | $\begin{aligned} & \pm(0.03+1.4) \\ & \pm(0.01+1.0) \\ & \pm(0.03+0.6) \end{aligned}$ | $\begin{aligned} & \pm(0.0079+0.0076) /{ }^{\circ} \mathrm{C} \\ & \pm(0.0018+0.0076) /{ }^{\circ} \mathrm{C} \\ & \pm(0.0012+0.0040) /{ }^{\circ} \mathrm{C} \end{aligned}$ |
|  | $\begin{gathered} B \\ \text { (PR30\%) } \end{gathered}$ | $\begin{aligned} & +50.0 \text { to }+1139.0 \\ & +1139.0 \text { to }+182.0 \end{aligned}$ | 0.1 | $\begin{aligned} & \pm(0.03+1.0) \\ & \pm(0.03+0.6) \end{aligned}$ | $\begin{aligned} & \pm(0.0085+0.0113) /{ }^{\circ} \mathrm{C} \\ & \pm(0.0123+0.0323) /{ }^{\circ} \mathrm{C} \end{aligned}$ |
|  | $\begin{aligned} & \text { PR } \\ & 12.8 \% \end{aligned}$ | $\begin{array}{r} 0.0 \text { to }+340.0 \\ +340.0 \text { to }+1770.0 \end{array}$ | 0.1 | $\begin{aligned} & \pm(0.01+1.0) \\ & \pm(0.03+0.6) \end{aligned}$ | $\begin{aligned} & \pm(0.0017+0.0076) /{ }^{\circ} \mathrm{C} \\ & \pm(0.0012+0.0040) /{ }^{\circ} \mathrm{C} \end{aligned}$ |

Note: Calibration conforms to JIS C1602-1981. Type PR12.8\% conforms to the PR of JIS C1602-1974, however. Compensation accuracy and temperature coefficient of the reference junction and the error of thermocouples and compensating wires are not included.

| Voltage measurement | Range | Measurement range | Res-olution | Measurement accuracy <br> $\pm$ (\% of rdg $+\mu \mathrm{V}$ ) | Temperature coefficient $\begin{aligned} & \left(0^{\circ} \mathrm{C} \text { to }+50^{\circ} \mathrm{C}\right) \\ & \pm(\% \text { of } \mathrm{rdg}+\mu \mathrm{V}) /{ }^{\circ} \mathrm{C} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 20mV | -19.999mV to +19.999 mV | $1 \mu \mathrm{~V}$ | $\pm(0.03+5 \mu \mathrm{~V})$ | $\pm(0.0015+0.04 \mu \mathrm{~V}) /{ }^{\circ} \mathrm{C}$ |
|  | 200 mV | -199.99 mV to +199.99 mV | $10 \mu \mathrm{~V}$ | $\pm(0.03+20 \mu \mathrm{~V})$ | $\pm(0.0015+0.4 \mu \mathrm{~V}) /{ }^{\circ} \mathrm{C}$ |
|  | 2V | -1.9999 V to +1.9999 V | $100 \mu \mathrm{~V}$ | $\pm(0.03+200 \mu \mathrm{~V})$ | $\pm(0.0015+\quad 4 \mu \mathrm{~V}) /{ }^{\circ} \mathrm{C}$ |
|  | 20V | -19.999 V to +19.999 V | 1 mV | $\pm(0.04+2 \mathrm{mV})$ | $\pm(0.0015+40 \mu \mathrm{~V}) /{ }^{\circ} \mathrm{C}$ |


| Linearization $\quad$ | Digital compensation (8 types are contained for |
| ---: | :--- |
|  | individual thermocouples) |
|  | Linearization on/off is programable for each group. |
| Reference junction | compensation: Internal and external (programmable for |
|  | each group) |
| Internal | Terminal board temperature measurement using |
|  | platinum RTDs |
|  | Compensation accuracy: $\pm 0.5^{\circ} \mathrm{C}$ (Including terminal |
|  | board temperature distribution. Guaranteed for 6 |
|  | months under an ambient temperature of $+23^{\circ} \mathrm{C}$ |
|  | $\pm 5^{\circ} \mathrm{C}$ with relative humidity of $85 \%$ or lower, input |
|  | terminal temperature balanced.) |
|  | Temperature coefficient: $\pm 0.004{ }^{\circ} \mathrm{C}$ (under ambient |
|  | temperature of $0^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$ or $+28^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ |

## Platinum RTD Voltage Measurement Unit Specifications

Input signal types:
Platinum RTD : Nominal resistance 100 , $3 / 4$ wire system
DC voltage $: \pm 20 \mathrm{mV}, \pm 200 \mathrm{mV}, \pm 2 \mathrm{~V}, \pm 20 \mathrm{~V}$
Input channels : 20 channels/unit
Scanning speed : $50 \mathrm{~ms} /$ channel (100 ms/channel for 3-wire platinum RTD)

Input system
: 4-wire switching system using electromechanical relays (the negative current terminal is common to all channels).

Input terminal

Input impedance : $50 \mathrm{M} \Omega$ or more (approx. $11 \mathrm{M} \Omega$ for 20 V range)
Measurement range and accuracy: Guaranteed for six months under an
ambient temperature of $+23^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}$ with relative humidity of $85 \%$ or lower

| Tempera- <br> ture <br> measure- <br> ment | Type | Measurement range <br> $\left({ }^{\circ} \mathrm{C}\right)$ | Resolu- <br> tion | Measurement <br> accuracy <br> $\pm\left(\%\right.$ of rdg $\left.+{ }^{\circ} \mathrm{C}\right)$ | Temperature <br> coefficient <br> $\left(0{ }^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$ <br> $\pm\left(\%\right.$ of rdg $\left.+{ }^{\circ} \mathrm{C}\right)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

Note: Calibration conforms to JIS C1604-1989. Nominal resistance $100 \Omega$. Sensor's error not included.

| Voltage measurement | Range | Measurement range | Res-olution | Measurement accuracy $\pm$ ( $\%$ of $r d g+\mu \mathrm{V}$ ) | Temperature coefficient $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$ $\pm(\%$ of $r d g+\mu \mathrm{V}) /{ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 20 mV | -19.999 mV to +19.999 mV | $1 \mu \mathrm{~V}$ | $\pm(0.03+5 \mu \mathrm{~V})$ | $\pm(0.0015+0.04 \mu \mathrm{~V}) /{ }^{\circ} \mathrm{C}$ |
|  | 200 mV | -199.99 mV to +199.99 mV | $10 \mu \mathrm{~V}$ | $\pm(0.03+20 \mu \mathrm{~V})$ | $\pm(0.0015+0.4 \mu \mathrm{~V}) /{ }^{\circ} \mathrm{C}$ |
|  | 2V | -1.9999 V to +1.9999 V | $100 \mu \mathrm{~V}$ | $\pm(0.03+200 \mu \mathrm{~V})$ | $\pm(0.0015+\quad 4 \mu \mathrm{~V}) /{ }^{\circ} \mathrm{C}$ |
|  | 20 V | -19.999 V to +19.999 V | 1 mV | $\pm(0.04+2 \mathrm{mV})$ | $\pm(0.0015+40 \mu \mathrm{~V}) /{ }^{\circ} \mathrm{C}$ |

Linearization : Digital compensation
Linearization on/off is programmable for each group. Platinum RTD measuring current: Approx. 1 mA (open circuit voltage:

15 V or less)

Allowable conductor resistance: $10 \Omega$ or less per conductor for 3-wire system
$100 \Omega$ or less per conductor for 4-wire system

## Calibration Time

Minimum: 0.30 second
Maximum: 1.05 second

## Noise Rejection Ratio

Effective CMRR for AC: Not less than 100 dB (at $50 / 60 \mathrm{~Hz} \pm 0.2 \mathrm{~Hz} \mathrm{AC}$ with imbalanced input of $1 \mathrm{k} \Omega$ )

Effective CMRR for $D C$ : Not less than 140 dB (for imbalanced input of

NMRR : Not less than 45 dB (at $50 / 60 \mathrm{~Hz} \pm 0.2 \mathrm{~Hz} \mathrm{AC)}$

## Crosstalk

Interchannel crosstalk: Better than 120 dB (for DC voltage)
Maximum Voltage Application Range
Voltages applied across input terminals must not exceed the following range under any circumstances:

| Unit | Thermocouple/voltage <br> measurement unit | RTD/voltage <br> measurement unit |
| :---: | :---: | :---: |
| Across co-channel input terminals | $\pm 50 \mathrm{~V}$ | $\pm 40 \mathrm{~V}$ |
| Across inter-channel input terminals | $\pm 100 \mathrm{~V}$ | $0 \mathrm{~V}( \pm 100 \mathrm{~V}$ at <br> voltage terminals) |
| Across input terminals and chassis | $\pm 200 \mathrm{~V}$ | $\pm 200 \mathrm{~V}$ |

Note: DC level or AC peak value

## General Specifications

A/D conversion : Dual slope integration
Zero and full scale calibration: Automatic calibration by program Calibration timing: At the beginning of each scan and at approx. 15 second intervals

Warm-up time : Less than 30 minutes to meet the specifications (after storage under the same temperature as the operating temperature)
Operating temperature: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ with relative humidity of $85 \%$ or lower

```
Storage temperature: - 25 ' C to +70 C with relative humidity of 95% or
    lower
Power supply : Supplied from the TR2731 mainframe (approx. 30 Vdc,
    not more than 10 W)
External dimensions: Approx. 424(W) x 88(H) x 450(D) mm
Weight : TR2741A 7.5 kg or less
    TR2741B 9.0 kg or less
    TR2741C 7.5 kg or less
    TR2741D 9.0 kg or less
    TR2741E 9.0 kg or less
```

Accessories supplied:
(1) Fuse (EAWK 0.4 A) 2
(2) Connecting cable MC-76-01 (1 m) 1
(3) Plug (for external start/stop) SI-7502 1

2-3. PANEL DESCRIPTION


FRONT VIEW


REAR VIEW

Fig. 2-1 TR2741 panel description

2-3-1. Front Panel Description


POWER indicator lamp Lights when the TR2741 is powered.
(2) RUN indicator lamp

Lights during measurement or calibration.

2-3-2. Rear Panel Description
(3) EXT. START/STOP connector

Accepts an external start/stop signal. Each time the "+" and "-" terminals of this connector are shorted through a relay contact, the instrument repeats start and stop alternately (this function is the same as the LOG START/STOP key on the TR2731.). In the multi-user log scan mode, however, this input accepts no external start/stop signal.

The ratings of the input relay signal are as follows:
Contact resistance: $50 \Omega$ or less
Chattering: 20 ms or less
Current capacity: 10 mA or more
Voltage capacity: 7 V or more
(4) TERM. NO switches

These switches assign a terminal number to the TR2741 as shown in the following:


Fig. 2-2 Terminal number assignment

SENSOR OUT switch
Determines whether sensor fault is to be detected or not. When this switch is set to ON, sensor fault is detected only for the Channels for which the thermocouple range is specified. This switch should be set to $O N$ whenever a contact input is to be used.

LINE switch
Selects line frequency between 50 and 60 Hz . Set this switch to 50 Hz or 60 Hz according to the local line frequency.
POWER switch
This POWER switch is provided for maintenance purposes and should usually be left at the ON position. When this switch is set to the ON position, the power to the TR2741 can be controlled by the POWER switch on the TR2731 mainframe.
(8) Connectors J1 and J2

Accept an interconnecting cable to the TR2731 mainframe or to another TR2741 Sensor Terminal. All power supply and data transfer are made through these connectors.
(9) GND terminal

This terminal is internally connected to the instrument's chassis. To prevent noise interference, this terminal should be grounded through a thick copper wire.

2-3-3. Terminal Board

Figure 2-3 shows the TR2741E terminal board.
The terminal board for the TR2741 series has the following configuration:

| Model | Thermocouple/voltage <br> measurement unit | Platinum RTD/voltage <br> measurement unit |
| :---: | :---: | :---: |
| TR2741A | 1 | - |
| TR2741B | 2 | - |
| TR2741C | - | 1 |
| TR2741D | - | 2 |
| TR2741E | 1 | 1 |



Fig. 2-3 TR2741E terminal board
(1) Thermocouple/voltage input terminals

These terminals accept thermocouple output (for temperature measurements), DC voltage, or contact signal.


Fig. 2-4 Thermocouple/voltage input terminals
(2) MPX OUT./AD IN. terminals

Accept scanner output (MPX OUT.+ and MPX OUT.-) and A/D
converter input (AD IN.+ and AD IN.-). Normally, shorting bars are provided across the MPX OUT.+ and AD IN.+ terminals and across the MPX OUT.- and AD IN.- terminals. Use of these terminals is described in item 2-5-2, (4).
(3) Platinum RTD/voltage input terminals

Accept platinum RTD output (for temperature measurements) or $D C$ voltage.


Fig. 2-5 Platinum RTD/voltage input terminals
(4) External DC voltage/current source input terminals If an external DC voltage or current source is connected across these terminals, it is output to the current output terminals of the channel for which a voltage range is selected. The input voltage/current polarity is duplicated on the output terminals. The input voltage or current source is not output to current terminals, however, if a range other than the voltage range is selected. In this case, therefore, the terminals can provide a resistance measurement network of four-wire system. Use of these terminals is described in item 2-5-3, (3) d and e.
(5) Terminal board cover removal

Terminal board cover is terminated by two fasteners. To remove terminal board cover, turn them by $90^{\circ}$ from it's locked position $(()-\mathbb{D})$ and lift the cover up. To install it again, be sure to check the fastener is $\mathbb{D}$ position and then turn by $90^{\circ}$ to the former lock position.


2-4. PRINCIPLES OF OPERATION
2-4-1. Outlines of Sensor Terminal Operation

TR2741 Series Sensor Terminals are compact input terminal boards that can be distributed to install remotely from the TR2731 Computing Data Logger mainframe. Their functions and configuration are shown in Figure 2-6.

The Sensor Terminal integrates a microprocessor to control input scanning and appropriate measurement range selection according to commands sent from the mainframe, and a high-precision integration A/D converter converts input signals into the corresponding digital coded data. The sensor terminal also performs calibrating calculation, reference junction compensation for thermocouples, linearization arithmetic for sensors.

Up to four sensor terminals can be attached to the Data Logger mainframe. Upon receiving a start command, all attached sensor terminals simultaneously start input scanning and send data to the mainframe in bit serial format through a pair of signal lines. As shown in Figure 2-6, the sensor terminal is connected to the Data Logger mainframe via a pair of serial data lines, power supply lines, and start/stop control lines, yet is electrically isolated from the mainframe.


Fig. 2-6 TR2741 Sensor Terminal configuration

The sensor terminal can be configured by up to two different terminal board units, so that five different models are available depending on the combinations.

The thermocouple/voltage measurement unit accepts up to 40 channels of thermocouples (8 types), DC voltage inputs (4 ranges) and contact signals in combined form (up to 80 channels with two units). For reference junction compensation for temperature measurements using thermocouples, the temperature at the center of the top-plane terminal board is detected by the platinum RTDs to convert it into electromotive forces corresponding to each sensor, then the difference between the RTD output and each sensor output is determined for room temperature compensation. The high-precision, high-stability digital compensation technique is used to linearize thermoelectromotive forces to temperature for thermocouple output. Consequently this permits high-precision temperature measurements over a wide temperature range from $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.

Contact signals are used to identify value on/off or level switch status. They utilize the sensor fault detecting function for thermocouples. While contact signal status is displayed or printed as ON and OFF, it is internally processed as binary numbers of 0 and 1. It may, therefore, be used for GO/NOGO decision against preset upper or lower limits.
The platinum RTD/voltage measurement unit accepts up to 20 channels of platinum RTDs (nominal resistance $100 \Omega, 3$ or 4 wire system) and DC voltage (4 ranges) in combined form. For temperature measurements using 3-wire platinum RTD, the measurement is performed twice to compensate for the resistance of cable conductors (Figure 2-7). As a result, the measurement time requires 100 ms per channel, twice that for ordinary measurement.


Fig. 2-7 Compensation for cable conductor resistance in temperature measurements using a 3-wire platinum RTD

The terminal board is top-plane type, which ensures simple lead connection and prevents uneven temperature distribution over the terminal board which may cause errors in temperature measurements using thermocouples (Figure 2-8). The independent screw-type terminal as shown in Figure 2-9 assures positive, safe lead connection.


Fig. 2-8 Top-plane terminal board for sensor terminal


Fig. 2-9 Input screw-type terminal

In general, digital voltmeters or data loggers use the auto-zero circuit to calibrate the $A / D$ converter, in which an offset voltage Charged across a capacitor is decremented in analog form. This technique can compensate only for zero-point, however, and may affect measurement speed.

In contrast, the TR2741 has a reference resistance or voltage value for each input range and the built-in microprocessor compensates for the offset level and gain of the measurement system by referencing the reference value. This permits calibrating both full-scale value and zero-point without affecting scanning speed (Figure 2-10). Measurement for this calibration technique is performed at the beginning of each input scan, as shown in Figure 2-11. The times required for calibration measurement depends on input types, ranging from approximately 0.30 second to approximately 1.05 second (when all types of inputs are intermixed. Since the actual input scanning simultaneously starts after the longest calibration time, the measurement will remain simultaneous. The zero-point value and gain in each range are stored in the microprocessor during calibration measurement, and are compensated for all channels to be scanned.

Terminal board temperature measurements for reference junction compensation for thermocouples is also performed during calibration measurement.

If the $\log$ scan period is specified continuous, calibration measurement is performed at a timing other than the beginning of each scan, to ensure high-speed data logging. If scanning time is enlongated due to averaging arithmetic, calibration measurement interrupts at approximately 15 second intervals.

Compensation for calibration may cause deviation of measurement results due to accumulated calculation errors. To prevent this, the A/D converter of the TR2741 has a dynamic range approximately 4 times as large as the range shown in the specifications.

The time required for calibration are as follows:

| Range | Calibration counts | Remarks |
| :---: | :---: | :---: |
| $\begin{array}{r} 20 \mathrm{mV} \\ 200 \mathrm{mV} \\ 2 \mathrm{~V} \\ 20 \mathrm{~V} \end{array}$ | $\begin{aligned} & 3 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$ | ```Performed regardless of the selected range. When both ranges are simultaneously used, calibration is required once for each range.``` |
| Thermocouple (1) | 2 | 4 types of $T(C C), J(I C), E(C R C)$ and $K(C A)$ Calibration is always performed twice even if the 4 types are simultaneously used. |
| Thermocouple (2) | 2 | 4 types of $S(P R 10 \%), R(C P 13 \%), B(P R 30 \%)$, and PR1 $2.8 \%$ <br> Calibration is always performed twice even if the 4 types are simultaneously used. |
| 3-wire RTD <br> 4-wire RTD <br> High-resolution RTD | $\begin{aligned} & \text { 2/unit } \\ & 2 / \text { unit } \\ & 2 / \text { unit } \end{aligned}$ | For TR2741D, calibration is performed independently for channels 1 to 20 and 21 to 40. Therefore, calculation is also performed independently for channels 1 to 20 and 21 to 40 for platinum RTD measurement only. <br> If both the 3-wire RTD and 4-wire RTD are used at the same time, calibration is required once for each range. |
| Thermocouple's <br> internal reference <br> junction <br> compensation | 3/unit | If internal reference junction compensation is to be performed for only one channel in the thermocouple range, this counts should be added. For TR2741B, calibration must be performed six times as it consists of two units. |

Although dependent on the number of channels, the required calibration time is generally given by:
[(sum of calibration counts for range) $\times 50 \mathrm{~ms}]+\left\{\begin{array}{c}150 \\ \int_{200}^{50}\end{array}\right\} \mathrm{ms}$
For example, if the TR2741A is used and ranges of $20 \mathrm{mV}, 2 \mathrm{~V}$, internal reference junction compensation for $T$ (CC), and external reference junction compensation for $K(C A)$ are selected: $20 \mathrm{mV} \rightarrow 3,2 \mathrm{~V} \rightarrow 2, \mathrm{~T}(\mathrm{CC}), \mathrm{K}(\mathrm{CA}) \rightarrow 2$, internal reference junction compensation $\rightarrow 3$
$[(3+2+2+3) \times 50 \mathrm{~ms}]+\left\{\begin{array}{c}150 \\ \int_{200}\end{array}\right\} \mathrm{ms}=\left\{\begin{array}{c}650 \\ \int_{700}\end{array}\right\} \mathrm{ms}$


Fig. 2-10 Input compensation by calibration measurement


Fig. 2-11 Sensor terminal calibration sequence

## 2-4-3. Operation and Data Transfer

All data and command to and from the TR2741 Sensor Terminal is transferred in synchronous, bit-serial form via a pair of signal lines. Figure 2-12 gives a typical operation example in which input channels are specified and digitally-coded measurement data is transferred.

Commands and data are transferred in each 10 ms , one fifth the time slot of 50 ms . As shown in Figure 2-12, the input channels and measurement ranges for sensor terminal 1 are specified during the first 10 ms interval, those for sensor terminal 2 are specified during the second 10 ms interval, and so forth. When channel and range are specified, the input signal is integrated for 20 ms (when line frequency is 50 Hz ) and is then subject to $A / D$ conversion after a delay due to the settling time of the relay scanners. The output of the $A / D$ converter is subject to arithmetic operations such as calibration and linearization. The end of these operations is in the next time slot, and measurement data is transferred in the 3rd time slot.

Since mutually overlapped advance control is performed during measurement sequence on the sensor terminals, the data currently being transferred corresponds to the input channel specified two time slots or more before. A time lag of 10 ms actually exists between measurement starts on each sensor terminal, although they appear to be started simultaneously.

Sensor terminals can be installed up to 500 meters away from the data logger mainframe. Parity, frame, and comparison checks are performed on transferred data to ensure data reliability. If an error is detected, the sensor terminal or mainframe requests data resend up to three times. If the error still persists, the mainframe sends a transfer error (TRANS ERR) message. Upon receiving the TRANS ERR message, the pertinent sensor terminal suspends measurement until the next specified time is reached.

Transfer signals use +12 V isolated by photocouplers. The transfer rate is approx. 20 k bits/sec.


Fig. 2-12 Sensor terminal operation and data transfer sequence

2-5. OPERATING INSTRUCTIONS
2-5-1. Connection

This paragraph describes how to connect the TR2741 Sensor Terminal(s) to the TR2731 Data Logger mainframe.
(1) Make sure that the POWER switch on the TR2731 is set to OFF.
(2) As shown in Figure 2-13, connect the TR2741 to TR2731 and/or to another TR2741 with the supplied interconnecting cable(s). Either of the two rear connectors may be used for this connection since the two connectors are internally connected in parallel. Two sensor terminals may be connected to the TR2731 mainframe in either radial or daisy-chain configuration. Connection examples are shown in Figure 2-14.


Fig. 2-13 Connecting TR2741 to TR2731
a. One sensor terminal

c. Two sensor terminals

b. Two sensor terminals

d. Three sensor terminals

e. Three sensor terminals

f. Four sensor terminals

g. Four sensor terminals

h. Four sensor terminals


## CAUTION

If an interconnecting cable exceeds 100 meters in length, Check the total cable length and the number of attached sensor terminals according to item 2-5-4. If the requirements given in item 2-5-4 are not met, correct system operation may not be guaranteed.

Fig. 2-14 TR2741-TR2731 connection examples
(3) Set the switches on the TR2741 rear panel as follows: POWER switch: Normally set to ON.

LINE switch : Set to 50 Hz or 60 Hz according to the local line frequency (which affects the integrating time of the A/D converter).

SENSOR OUT switch: Determines whether or not thermocouple sensor burn-out detection is to be performed. If this switch is set to ON after one of the eight thermocouple ranges is selected, a SENS. OUT message is displayed on the TR2731 if the resistance of the pertinent sensor go over $30 \mathrm{k} \Omega$. A sensor resistance below $2 \mathrm{k} \Omega$ is defined as normal, and that between $2 \mathrm{k} \Omega$ and $30 \mathrm{k} \Omega$ is defined as irregular. When the TR2741 is used as contact input, this switch must be set to ON. While the output of thermocouples does not affect the sensor burn-out detecting function, an OVER message may be delivered to the TR2731's display or printer instead of a SENS. OUT message if the output of a thermocouple exceeds several tens millivolts due to an error. The OVER message will also be output if the objective temperature exceeds the temperature range of the thermocouple. In either case, the sensor and leads should be checked.

TERMINAL NO. switch: This switch is used to assign a terminal number to the local TR2741. When more than one sensor terminal is attached, each terminal number must be unique. The numbering scheme should always begin from 1; for instance, 1,2 , and 3 for three terminals, and $1,2,3$, and 4 for four terminals. After terminal number assignment is completed, seal the supplied terminal number stickers on the appropriate location of the corresponding sensor terminals.

The connection and rear panel switches settings for the TR2741 are now completed. The POWER switch setting (to ON) and TERMINAL NO. assignment should be completed before the TR2731 mainframe is powered.

2-5-2. Connecting Input Signal Leads to the Thermocouple/Voltage Measurement Unit.

Figure 2-15 is the photograph of the thermocouple/voltage measurement unit (TC unit). Each TC unit has 40 input channels; the one shown in Figure 2-15 consists of two units and has 80 channels.


Fig. 2-15 Thermocouple/voltage measurement unit terminal board (TR2741B)
(1) Terminal board description

The number provided just below each input terminal pair indicates a channel number. Symbols "+" and "-" indicate the input polarity. For voltage measurement, positive data is output (but no polarity sign is displayed) when the hot and cold leads of the input signal are coupled to the "+" and "-" terminals, respectively. If the input polarity is reversed, the output data is preceded by a negative sign (-). In general, the input lead with lower signal-source impedance should be connected to the "-" terminal.

When connecting a thermocouple or compensating conductors to terminals, their positive and negative leads must be connected to the "+" and "-" terminals, respectively. If the polarity is reversed, the correct measurement result won't be obtained.

The four terminals grouped at the top right corner of the unit will be described in item (4) below. They should normally be shorted with shorting bars as shown in the photograph.
(2) Connecting input signal lines The output leads of a thermocouple or compensating conductor should be firmly secured across the positive and negative terminals by either directly crimping the end of the leads or using solderless terminals (Figure 2-16). It is recommended that the same type of thermocouples be connected to terminals with consecutive numbering. This practice will be convenient for measurement using group function.


Fig. 2-16 Input signal line termination

Note the following points to avoid noise interference. Refer to 2-5-5 "Noise Interference Countermeasures".
o Ground the GND terminal of the TR2741 rear panel with a thick copper wire.

- Ground the chassis or frame of the object under measurement to the same earth point as the TR2741 with a thick copper wire.
o Using an oscilloscope, measure the potentials of the thermocouples connected to the sensor terminal with reference to the GND terminal of the TR2741, and ground the object under measurement or shield the thermocouples or compensating conductors so that the potential (especially its AC component) is minimized. If this potential exceeds $\pm 200 \mathrm{~V}$, not only make measurement errors increase but result malfunction of or damage to the measuring system.
o When using an external reference junction compensation, the thermocouple for the reference junction should be non-grounding type (Figure 2-17).


Fig. 2-17 Thermocouple connection example

When using a voltage standard for calibration or check, connect it to the TR2741 as shown in Figure 2-18.


Fig. 2-18 Connecting a voltage standard to the TR2741

## CAUTIONS

1. Exercise utmost care when handling input signal leads as they may induce high potentials.
2. Do not expose input terminals to natural wind or airflow from air conditioning units or to direct contact with bare hands. If a terminal is touched, allow several minutes before starting measurement.
3. When connecting thermocouple leads or compensating Conductors to sensor terminals, make sure that their polarity is correct and secure firmly.
(3) Connecting various types of sensors

Connection examples for various types of sensors are shown in
Figure 2-19.


Fig. 2-19 Connecting various sensors to the TC terminal
a. Non-grounding type thermocouple (1)

Common method for temperature measurements.
b. Non-grounding type thermocouple (2)

The outer shield conductor should be connected to the GND terminal on the TR2741 rear panel.
c. Grounding type thermocouple

This type requires special care as it is sensitive to noise interference. See 2-5-5 "Noise Interference Countermeasures".
d. External compensation for thermocouple (1)

Common method for temperature measurements using external reference junction compensation (two-channel compensation).
e. External compensation for thermocouple (2)

Common method for temperature measurements using external reference junction compensation (single-channel compensation).
f. DC voltage measurement Common method for DC voltage measurement
g. Strain measurement, etc.

When a broad dynamic range is required for a strain gauge or load cell, a range between -10 mV and +80 mV (with $1 \mu \mathrm{~V}$ resolution) can be selected. This dynamic range can be obtained by specifying external compensation and linearization to OFF in one of the ranges $T(C C), J(I C)$, $E(C P C)$, or $K(C A)$. Measurement accuracy is, however, reduced by around twice as poor as that in the 20 mV range for $D C$ voltage measurement. If measurement results are deviated, they may be averaged up to 40 times by means of the filter function of the TR2731.
h. Resistance measurement

Resistance can be measured by using a reference current source external to the instrument.

The maximum value of measurable resistance depends on environment conditions such as noise, induction, etc. Influence of noise interference and induction can be reduced by using a measuring current as large as possible and a voltage range as high as possible. It should be noted, however, that when the 20 V range is selected the input impedance of the TR2741 is approximately $11 \mathrm{M} \Omega$ and is connected in parallel with the resistor under measurement. The reference current source to be referenced must have an output accuracy equivalent to or better than the measurement accuracy.

The resistance can be determined as shown in Figure 2-20. The scaling function of the TR2731 permits direct readout of resistance.


Fig. 2-20 Resistance measurement (1)

If an external current source having adequate output accuracy is not available, the measuring setup shown in Figure 2-21 may be used. However, the current value must remain constant during a single scan.


Fig. 2-21 Resistance measurement (2)

Rs on channel $L$ is a reference resistor having a known value. Resistances $R X_{1}$ and $R X_{2}$ and current $I$ can be determined by scaling and secondary arithmetic operation. See item 3-6-3 for the setting procedure. The voltage ( $\mathrm{V}_{\mathrm{T}}$ ) across the constant current source must not exceed 100 V .

Figure 2-22 A shows a measuring setup with less error probability. When the resistance under measurement is relatively large, the current source, resistor under measurement, and cables should be shielded and connected to GND terminal to prevent noise interference.
A. Setup for less error probability

B. Setup with greater error probability


Fig. 2-22 Resistance measurement setup
i. Current measurement

Current is measured if an external reference resistance (Rs) is used. The current value is determined from the following equation:
$I \mathrm{I}=\frac{\mathrm{V}}{\mathrm{RS}}$
j. Instrumentation input

Instrumentation input of 4-20 mA or 10-50 mA circuit requires the TR1311B Terminal Box (option) and the TR2731's scaling function. The TR1311B can convert a current input of 4-20 mA to a corresponding voltage output of $25-125 \mathrm{mV}$, and 10-50 mA to $62.5-312.5 \mathrm{mV}$. This voltage output may be measured with the 200 mV or 2 V range and then converted into other engineering units, such as $0 \%$ to $100 \%$, by the scaling function.
(4) Use of scanner output terminals

The four terminals provided at the top right corner of the unit (Figure 2-15) provide the user with the common input and output of the scanner for extended application of the $T C$ unit.


Fig. 2-23 Use of thermocouple/voltage measurement terminal board unit (TR2741A)


The MPX OUT.+ and MPX OUT. - terminals on terminal board 2 should be connected in pararell to those on terminal board 1 , respectively. It should be noted that the TR2741B cannot be used with an external circuit provided in only one of the terminal boards.

Fig. 2-23' Use of thermocouple/voltage measurement terminal board unit (TR2741B)

As shown in Figure 2-23, the scanner output is usually coupled to the input side of the measurement system. An arbitrary analog circuit can be inserted in between the scanner output and measuring system input by using the four terminals (MPX OUT.+, MPX OUT.-, $A D I N-$, and $A D I N+$ ).

Included in those analog circuits are a linearization circuit for temperature measurements using thermisters, RC filter to reject random noise, reference resistor for current measurements, AC/DC converter, voltage attenuator, and so forth. Since those analog circuits have their specific settling times, the delay mode, one of the TR2731's filter functions, must be used. By using the delay mode, measurement timing can be delayed by a specified number of multiples of 50 ms (Figure 2-23). It should be noted, however, that this method affects all sensor terminals to increase measurement times.

Notes: The delay mode is not applied to the temperature/ voltage measurement unit of the TR2741E.
(5) Temperature measurement range In the temperature measurement ranges of the TR2731, up to eight types of thermocouples, linearization ON/OFF, and external/internal reference junction compensation can be specified.

Linearization ON: After external/internal reference junction compensation corresponding to the 8 types of thermocouples is performed, the result is linearized and displayed in temperature $\left({ }^{\circ} \mathrm{C}\right)$.

Linearization OFF: After external/internal reference junction compensation corresponding to the 8 types of thermocouple is performed, the result is not linearized and displayed in voltage (mV).

External reference junction compensation: No internal reference junction compensation is performed for voltage input from thermocouples.

Internal reference junction compensation: Reference junction compensation corresponding to each thermocouple type is performed for voltage input from thermocouples. (Thermoelectromotive forces are compensated based on the measured temperature of the terminal board.)

Since the -10 mV to +80 mV range is selected for thermocouple types $T(C C), J(I C), E(C R C)$, and $K(C A)$ (the 20 mV range is selected for all other types), the system can be used as a voltmeter with a measurable range of -10.000 mV to +80.000 mV (1 $\mu V$ resolution) if linearization $O F F$ and external reference junction compensation is specified. The measurement accuracy is, however, reduced to around twice as poor as that of the voltage measurement 20 mV range with deviation of measurement results slightly increased.

2-5-3. Connecting Input Signal Leads to the Platinum RTD/Voltage Measurement Unit

Figure 2-24 is the photograph of the platinum RTD/voltage measurement unit (RTD unit). Each RTD unit has 20 input channels; the one shown in the photograph is combined with a TC unit.


Fig. 2-24 Platinum RTD/voltage measurement unit terminal board (TR2741E)
(1) Terminal board description

Input terminals for a single channel are shown in Figure 2-25. The number at the center of the four terminals indicates the Channel number. Currents are output from the upper two terminals which is internally connected to a current source. The current drains through the "+" terminal and sinks into the "-" terminal. The lower two terminals are for voltage input. When the hot and cold leads of an object under measurement are coupled to the "+" and "-" terminals respectively, the measured data is positive in polarity. (No sign is given to the data output or display.) If the input signal polarity is reversed, the measured result is negative. (A minus sign precedes the data output and display.)
The paired terminals shown at the top right corner of the RTD unit are external current terminals, which will be described in item (3)-d below.

(2) Connecting input signal leads Figure 2-26 illustrates how to connect platinum RTD output leads to the terminal board.


RTD $100 \Omega$ three-wire $\operatorname{RTD} 100 \Omega$ four-wire Independent shield

Fig. 2-26 Connecting RTD to the terminal board

The RTDs to be used should conform to the JIS standard and have nominal resistance of $100 \Omega$.

Note that RTDs with the nominal resistance other than $100 \Omega$ cannot be used.

If shielded wires are used for input cables, connect the outer shield conductors to the V- terminal. If the outer shield conductor is isolated from the RTD, it should be connected to the GND terminal on the TR2741 rear panel.

## CAUTION

On the RTD unit, the I- terminal is common to all Channels to compensate for cable resistance of the three-wire system.

Therefore, an error may result if the sensor's
insulation is deteriorated when the three-wire system is used. Care must be exercised regarding to insulation of the sensors. (See Figure 2-27.)


The I- terminal is internally common to all channels.

Fig. 2-27 Internal connection for temperature measurement using RTDs

Measurement error due to deteriorated insulation of the sensor will not occur in the four-wire system. Each sensor can be isolated from other sensors by cutting the jumper wires as instructed below:
(1) Remove the top cover from the TR2741.

(2) Cut the tinned jumper wires of the pertinent channel. Jumper wire location is indicated by an arrow in Figure 2-29.
(3) Remount the top cover on the TR2741.
(4) The schematic diagram for sensor connection is shown in Figure 2-30.


Fig. 2-29 Location of jumper wires


Fig. 2-30 Schematic diagram for sensor connection

For voltage measurement, apply the objective voltage across the $\mathrm{V}+$ and V - terminals. At that time nothing should be connected across terminals I+ and I-.

Note the following points to minimize noise interference:
o Ground the GND terminal on the TR2741 rear panel to the earth with a thick copper wire.
o Ground the chassis or frame of the object under measurement to the same earth point as the TR2741 with a thick copper wire.
o Using an oscilloscope, measure the potentials of the RTDs or other sensors connected to the sensor terminal by referencing the TR2741 GND terminal, and ground the object under measurement or shield the RTDs so that the potential (especially its AC component) is minimized. If this potential exceeds $\pm 200 \mathrm{~V}$, not only make measurement errors increase but result malfunction of or damage to the measuring system. When using a voltage standard for calibration or check, connect it to the TR2741 as shown in Figure 2-18.

## CAUTIONS

1. Exercise the utmost care when handling input signal lines as they may induce high potentials due to induction or deteriorated insulation.
2. Firmly secure the end of RTD sensor cables to the input terminals.
(3) Connecting various types of sensors

Connection examples for various types of sensors are shown in Figure 2-31.


Fig. 2-31 Connecting various sensors to the RTD terminal
a. Voltage measurement

Common method for voltage measurement
b. 3-wire RTD

Common setup for temperature measurements using a 3-wire RTD
c. 4-wire RTD

Common setup for temperature measurements using a 3-wire RTD

Note: If linearization OFF is specified for the 3- or 4-wire RTD by the TR2731, direct readout of resistance can be obtained. As a result, this function permits resistance measurement in the following ranges:

| Range | Measurable resistance | Resolution |
| :--- | ---: | :---: |
| 3-wire RTD | $0.00 \Omega$ to $400.00 \Omega$ | $0.01 \Omega$ |
| 4-wire RTD | $0.00 \Omega$ to $400.00 \Omega$ | $0.01 \Omega$ |
| 4-wire RTD, <br> high-resolution | $80.00 \Omega$ to $180.00 \Omega$ | $0.01 \Omega$ |

The measurement accuracy and temperature coefficient are the same as those for RTD unit measurement.
d. Resistance measurement using an external power source External voltage/current source terminals are provided at the top right corner of the terminal board. When a voltage range is specified, the EXT. It and EXT. I- terminals are connected to terminals I+ and I- of the specified channel, respectively. Therefore, resistance can be measured by connecting as shown in Figure 2-31 d.

The maximum value of measurable resistance depends on environmental conditions such as noise, induction, etc. Influence of noise or induction interference can be reduced by using a measuring current as large as possible and a voltage range as high as possible. It should be noted, however, that when the 20 V range is selected the input impedance of the TR2741 is approximately $11 \mathrm{M} \Omega$ and is connected in parallel with the resistance under measurement. The reference current source used must have an output accuracy equivalent to or better than the measurement accuracy. The resistance can be determined by $R x=V / I s$, where $V$ is a measuring voltage and Is is an external current source. Using the TR2731's scaling function, direct readout of resistance is obtained.
e. Measurement of voltage difference The difference between an input voltage and an external voltage can be measured by connecting a voltage source to the external voltage input terminals. In this case both input and external voltages should not exceed the rated maximum value ( $\pm 40 \mathrm{~V}$ ). The instrument can also be used for a strain gauge excitation for strain or pressure measurement.

The number of attachable TR2741 Sensor Terminals versus allowable cable lengths is shown in Figure 2-32. The total length of cables must meet the following two conditions:
(1) Multiply the cable length between the TR2731 and the nearest TR2741 by the number of subsequent TR2741 terminals on the daisy chain (including the nearest TR2741 itself) (50 m x $4=200 \mathrm{~m}$ in the following example). Multiply the cable length (expressed by meters) between the first TR2741 and second TR2741 by the number of subsequent TR2741 terminals on the daisy chain (including the second TR2741 itself) ( $20 \mathrm{~m} \times 3=60 \mathrm{~m}$ in the following example). Perform similar calculation for the third and forth TR2741 terminals as well, and totalize the multiplication results.

Condition I: The totalized result must not exceed 500.
The TR2731 is provided with two connectors, which can distribute individual line system. In this case, each line system must meet Condition I.
(2) Condition II: The total length of all cables must not exceed 600 meters (including cables not terminated by the TR2741 as well).


Fig. 2-32 Calculating cable lengths

## Some calculation examples are shown below:



Fig. 2-33 Connection example-1


Fig. 2-34 Connection example-2


Fig. 2-35 Connection example-3


Fig. 2-36 Connection example-4


Fig. 2-37 Connection example-5

The TR2741 Sensor Terminal is designed to be affected least noise interference. If the measurement result is not stable or measurement error is unusually large, employ the following countermeasures:
(1) Major types of noise
a. Normal mode voltage

If a voltage source ( $\mathrm{V}_{\mathrm{NMV}}$ ) exists in series to a signal source voltage Vs, it is called a normal mode voltage, which can cause measurement error. (See Figure 2-38.)

The degree of influence of this normal mode voltage on a measurement result is referred to as normal mode rejection ratio (NMRR), which is expressed as follows:

NMRR $=\left|\frac{V_{\text {NMV }}}{\text { Measured value }-\mathrm{Vs}}\right|$
In most cases, the NMV is induced by AC line to a signal source or input cables and has line frequency of 50 , 60 , or 400 Hz . In the above equation, $\mathrm{V}_{\mathrm{NMV}}$ is the peak noise voltage level (effective value $x \sqrt{2}$ when sine wave).


Fig. 2-38 Normal mode voltage
b. Common mode voltage

As shown in Figure 2-39, if the same voltage as referenced to the ground is induced to the hot and cold signal lines, the voltage is called a common mode voltage (CMV).

If a measuring instrument is connected to the signal source, the total setup is expressed by the equivalent circuit as shown in Figure 2-40. In this equivalent circuit, the common mode voltage causes a generation of normal mode voltage Ve due to $R$ and $Z$, which eventually causes measurement error. The degree of influence of this common mode voltage on the measurement result is expressed by the common mode rejection ratio (CMRR), which is given by the following equation:

$$
C M R R=\left|\frac{V_{C M V}}{\text { Measured value }-V s}\right|
$$

The CMV is a particularly significant problem when resistance $R$ is increased due to a long input cable or large signal source impedance. (See Figure 2-40.) The major component of the $C M V$ is induced by an earth-to-earth current generated by the $A C$ line. In the above equation, $V_{C M V}$ is a peak noise voltage level.

As mentioned just above, the major component of the NMV or CMV is the line frequency $(50,60$, or 400 Hz ). If a higher noise frequency of several tens kilohertz is induced to the signal line, however, it may cause nonlinearity in amplifiers or semiconductor switches within the measuring instrument used and may eventually result in a much greater measurement error.


Fig. 2-39 Common mode voltage


Fig. 2-40 Influence of common mode voltage
(2) Preliminary investigation of noise sources

Noise sources which may have considerable affect on the temperature measurements using the TR2731/2741 system will include the following:

- High voltage equipment
o Large current handling equipment
- RF or pulse equipment

If the temperature or voltages of these equipments itself or those in the vicinity of them are to be measured, careful preliminary investigation is required to determine the possible influences to be expected from the equipment and the necessary countermeasures.
a. Measuring the CMV

To determine the CMV of the measuring setup, measure the voltage across the cold lead (at the end of the output cable) of the sensor and the ground line for the TR2741 sensor terminal with an oscilloscope (with a frequency response better than 10 MHz , input impedance higher than 1 M $\Omega$ ). See Figure 2-41.


Fig. 2-41 CMV measurement setup
b. Measuring the NMV

To determine the NMV of the measuring setup, measure the voltage across the hot and cold leads of the sensor at the end of the output cable with a floating type oscilloscope. The floating type oscilloscope has one or more inputs which are completely isolated from the primary AC power source or the earth. Usually, it is a battery-driven oscilloscope. See Figure 2-42.


Fig. 2-42 NMV measurement setup
(3) Noise interference countermeasures

Depending on the type or level of noise interference, the noise rejection characteristic inherent to the instrument may not be sufficient to completely eliminate the noise. In such a case, employ the following countermeasures:
a. Selecting the appropriate type of thermocouple Where possible, use non-grounding type thermocouples for measurement and isolate them from the objects under measurement.


Fig. 2-43 Use of non-grounding type thermocouple

If a grounding type thermocouple is unavoidable to use or it is not isolated from the object under measurement or from the earth, use an input cable as short as possible. If measurement is seriously affected by high-frequency CMV noise when grounding type thermocouples are used, connect a ceramic capacitor of $0.001 \mu \mathrm{~F}$ to $0.01 \mu \mathrm{~F}$ across the input terminals (both hot and cold) of each channel and the GND terminal on the rear panel of the instrument.


Fig. 2-44 Action against RF noise problem for grounding type thermocouples
b. Grounding of the object under measurement To prevent noise transfer from the object under measurement to the thermocouple, connect the object to the GND terminal on the rear panel of the instrument with a thick, short wire.


Peripheral
equipment

Fig. 2-45 Grounding the object under measurement
c. Use of electrostatic shield

To prevent the input signal lines from electrostatic coupling with adjacent noise sources, use a shielded cable for the input line. The outer shield conductor of the cable should be connected to the GND terminal on the rear panel of the instrument.


Fig. 2-46 Input connection using a shielded cable
d. Use of a twisted pair cable

If a large-current power cable is layed near the input signal line, $N M V$ noise interference may generate due to electromagnetic coupling. If this is expected, twisted pair cables should be used for input signal lines.

Since those power cables usually have high potentials, it is recommended that the twisted pair cable should be provided with an electrostatic shield as well.


Fig. 2-47 Input connection using twisted pair cable
MEMO

## SECTION 3

## TR2731 COMPUTING DATA LOGGER

3-1. GENERAL

The TR2731 Computing Data Logger provides various measurement modes for selective data acquisition from intermixed input signals, and is capable of various data logging through the TR2741 Sensor Terminals or optional input cards. It has the following features:
(1) Since the TR2731 contains arithmetic functions often used for data logging, a complete data acquisition system can be configured only with the TR2731 and TR2741. The standard arithmetic functions include 8 types, such as the linear scaling arithmetic for engineering units conversion, statistic operations on the time axis, differential operations between multiple input channels, and so forth. In addition, nine types of secondary arithmetic functions are optionally available.
(2) Along with the data logging function, the TR2731 also provides continuous operation and monitoring functions. These functions include the scanning monitor that operates independently of regular logging, relay outputs for over-limits alarm, continuous single-channel display, alarm print which outputs data only for unusual measurement result, up to 12 channels of analog output permitting monitoring with an analog recorder.
(3) The TR2731 permits the user simple entry of measuring parameters with its categorized input keys and a large fluorescent display. For group programming, the direct item specification and automatic rearrangement functions permits easy programming, readouts, addition, insertion and deletion of group numbers. Remote programming through the GPIB interface is also possible in complete form.
(4) A wide variety of input/output options are available. They include the GPIB interface, $B C D$ output/external control, $B C D$ input, relay output, analog output, serial data output, pulse counter, etc.
(5) The multi-user log mode permits independent execution of up to four types of data logging.

## Input Section

Analog input (temperature, voltage, resistance) and contact input Attachable sensor terminals: Up to four TR2741's (up to 320 input Channels)

Attachment format : Synchronous, serial transfer using a six conductor cable (signal, power supply, and external start/stop)

Maximum interconnecting cable length: 500 meters (if any one of the cables exceeds 100 meters in length, the total cable length must conform to the restriction given in item 2-5-4.)
Input scanning time: Max. 4 seconds (including no calibration time) Maximum scanning speed: 80 channels/sec. (when four TR2741's are attached)

Digital input : Available with the TR2730-530 option card. (Concurrent use with TR2730-580 is not possible.)

Input condition : TTL level or +12 V to +18 V , 6 digit BCD, max. 4 channels

Pulse counter : Available with the TR2730-580 option card. (Concurrent use with TR2730-530 is not possible.)

Input condition : Contact or TTL level, 4 digits, max. 4 channels

## Measurement Operations

Measurement modes : The following 4 modes are selectable:

- Log scan mode : Automatically scans the inputs at the specified intervals to $\log$ data.
o Multi-user log scan mode: Permits independent command for up to 4 scan groups.
o Single scan mode: Permits manual command for a single scan.
- Monitor scan mode: Monitors scanning while making log scan.

Log interval : The following 4 intervals are selectable (in the log scan mode only):

- Single interval : Permits arbitrary interval setting between continuous and 24 hours 00 minute 00 second (basic interval).
o Variable interval: Measuring intervals can be specified for each of up to 6 time divisions.

Time to be divided: 00 day 00 hour 00 minute to 99 days 23 hours 59 minutes

Division interval: Up to 200 times the basic interval (up to 24 hours 00 minute 00 second which is N times the basic interval)
o Multi-interval : Data is logged at different intervals for each input channel group. Up to 8 groups can be specified.
Interval : Up to 200 times the basic interval (maximum 24 hours 00 minute 00 second which is $N$ times the basic interval)
o External interval: Data is logged at the interval of an external contact signal (TR2730-520 option card is necessary.)
Scan channel : Start/stop channels can be arbitrarily specified for

Monitor interval : Specifiable between continuous and 60 minutes 00 second (in monitor scan mode only).

Monitor channel : All channels specified by scan channel or selected 12 channels max.

Filter function : In average mode, the filter function executes data averaging of all input channels by the specified number of times (up to 40 times). In delay mode, the value at the specified number of times (up to 40) is the measured data. The measurement time per channel is $50 \mathrm{~ms} \times \mathrm{N}+200 \mathrm{~ms}$ ( N : specified number of times).

Label : A label of up to 8 alphanumeric characters can be printed out for each log scan. In the ID mode, the least significant 3 digits of a label are incremented by one at each log scan up to 999. In multi-user $\log$ scan mode, the ID mode cannot be used.

```
Auto start/stop : Permits automatic log-scan start/stop.
    0 0 \text { day 00 hour 00 minute to 99 days 23 hours 59}
    minutes.
    (1) Specified with the elapsed time from the
    measurement start for the timer mode.
    (2) Specified with the real clock time for the
        clock mode.
    (3) Unusable for the multi-user log scan mode.
Time : Permits presetting date, hour and minute
    (specifiable in the clock or timer mode).
    Display: 00 day 00 hour 00 minute 00 second to 99
    days 23 hours }59\mathrm{ minutes }59\mathrm{ seconds
    Reference signal stability: At least }\pm5\mathrm{ seconds/day
    (under the specified operating environment)
Continuous single-channel display: Continuously displays the data. of one
    specific channel (after scaling operation) at an
    approximately one second interval. A specified
    engineering unit is attached to the measured data.
Arithmetic Processing and Setting
Processable input channels: 80 channels (analog) plus 4 channels (for
        TR2730-530/580 option cards). When two or more
        sensor terminals are used, the TR2730-010
        (Memory/Aux. Function option card is necessary;
        processable input channels are extended to 320 + 4.
Processable groups:
    Function : 40 groups
    Upper/lower limit setting: 40 groups
```



Note: Items (2) through (7) are arithmetic operations for the same channel. The time intervals for items (4) through (7) can be specified up to 127 times the log interval. However, if the total value in item (7) exceeds 7 digits, the least significant 7 digits are totalized.

If the total value exceeds 7 digits for average operation (6), the least significant 7 digits are averaged. Therefore, the operation result is not guaranteed.

Operations (2) through (7) can not apply to the data resulting from monitor scan mode.

Upper/lower limit value setting: An upper/lower limit (0.0000 to +99999), alarm contact output and log/monitor scan can be specified for each group.
Secondary arithmetic operation: Nine types of operations on logged data, inhibition of non-processed data output and alarm comment display are available with the TR2730-010 (Memory/Aux. Function option card).

- Operation types:
(1) Difference from other input channel (SUB) X $-Y$
(2) Product with other input channel (MUL) $X \cdot Y$
(3) Ratio to other input channel (DIV) $X / Y$
(4) Maximum data in one group (Max.)
(5) Minimum data in one group (Min.)
(6) Average of one group (Ave.)
(7) Difference between the maximum and minimum data within one group (p-p)
(8) Standard deviation within one group (SD) $\sqrt{\frac{1}{N}(X n-\bar{X})^{2}}$
(9) Deviation within one group (Dev.) $\mathrm{Xn}-\overline{\mathrm{X}}$
o Number of digits and decimal point location of operation results: For addition and subtraction, the number of digits of operation results is identical to that of the input data having a smaller number of decimal places. For multiplication, the number of decimal places of an operation result is identical to that of the multiplicand. If an operation result exceeds seven digits, the most significant seven digits are output.


Print mode:


## General Specifications

Optional card slots: 4 slots (slot for TR2730-010 not included) Power failure processing: Programming contents and clock are protected against power failure (in LOCK position only)

- Back-up battery : Ni-Cd battery
o Back-up period : More than one month (when fully charged) The maximum clock back-up period is 18 hours.
o Auto restart : When the line power is recovered, the instrument initializes itself, prints the time of power failure generation, then automatically restarts data logging. If arithmetic operation was specified before power failure, the first operation made after power recovery is the initial operation.

Self diagnosis function: Includes back-up battery voltage check, memory read/write check, program memory readout check, attached terminal configuration check, installed option configuration check, etc.

External start/stop: Non-voltage make contact (chattering less than 30 ms , make time more than 100 ms$)$

Panel lock : When the POWER key switch is set to the LOCK position, all controls and keys on the front panel are disabled.
Operating temperature: $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ with relative humidity of $85 \%$ or lower

Storage temperature: $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ with relative humidity of $90 \%$ or lower

Power supply $\quad: 100,120,200,220 \mathrm{Vac} \pm 10 \%$ or 240 Vac ${ }_{-10 \%}^{+4 \%}$ with frequency of $50 / 60 \mathrm{~Hz}$, sine wave, less than 150 VA

External dimensions: Approx. 424 (W) x $132(\mathrm{H}) \mathrm{x} 450(\mathrm{D}) \mathrm{mm}$
Weight : 15 kg or less
Accessories supplied:

| (1) Operation \& Maintenance Manual | 1 copy |
| :--- | :--- |
| (2) Recording paper (9993-013) | 5 volumes |
| (3) Numbering sticker (for TR2741/30) | 2 |
| (4) Fuse (EAWK2.5 A)* | 2 |
| * 1.25 A for 200, 220, 240 Vac. |  |

## 3-3. PANEL DESCRIPTION

3-3-1. Front Panel Description

This paragraph describes the TR2731 front panel features in the order of encircled reference numbers shown in Figure 3-1.


POWER switch Supplies AC power to the instrument if set to ON. When this switch is set to the LOCK position, all control key functions on the front panel are disabled and programming contents and clock are protected against power failure and automatic restart upon power recovery is made available.
(2) LOG SCAN lamp

Lights during log scan busy.
(3) MONIT. SCAN lamp

Lights during monitor scan busy.
(4) LOG MISSED lamp

Lights if $\log$ scan interval is specified too short or the continuous scan mode is selected.
(5) LOG key

This key controls log scan start/stop. The first operation of
this key starts a log scan sequence; the lamp in the key
lights. The second operation of this key stops the log scan
sequence; the lamp in the key goes off. Each time this key is pressed, the instrument repeats $\log$ scan start and stop alternately.
(6) SINGLE key

This key starts a single scan manually.
(7) MONITOR key

This key controls monitor scan start/stop. The first operation of this key starts a monitor scan sequence; the lamp in the key lights. The second operation of this key stops the monitor scan sequence; the lamp in the key goes off. Each time this key is pressed, the instrument repeats monitor scan start and stop alternately.
(8) LOG DATA key

This key activates a logged data print command. The first operation of this key outputs log scan data to the internal printer; the lamp in the key lights. The second operation of this key inhibits data output to the internal printer; the key lamp goes off. Each time this key is pressed, the instruments repeats the print enable and disable states alternately.
(9) ALM DATA key

This key controls alarm print mode. Operation of this key outputs alarm data to the internal printer; the lamp in the key lights. For example, if data exceeding an upper or lower limit setting is generated in the log scan mode, the entire log scan channel data can be printed once. Alternatively, if an error is generated in the monitor scan mode, the pertinent channel data can be printed each time upon the error generation and recovery from the error. The alarm print mode is, however, can not be used with the single scan mode.
(10) PROGRAM LIST key

This key is used to output programming contents to the internal thermal printer or an external units in the specified format. When this key is activated, the lamp in the key lights. Each time this key is pressed, the program list output enable/disable status is repeated alternately.
(11) OUTPUT ENABLE key

This key controls output of logged data and programming contents to external units. Operation of this key outputs logged data to the BCD Output option card (TR2730-520) and GPIB Interface option card (TR2730-510), and logged data and programming contents to the Serial Data Output option card (TR2730-560); the key lamp lights. Each time this key is operated, the output enable/disable status is repeated alternately.
(12) AUX. FUNCTION key

This key is used for alarm comment or secondary arithmetic operation setting. When the SCAN FORMAT (upper row) is selected, operation of this key permits alarm comment setting. When the GROUP PROGRAM (lower row) is selected, operation of this key permits secondary arithmetic operation type setting (TR2730-010 Memory/Aux. Function option card is necessary. When this key is activated, the lamp in the key lights.
(13) This key determines whether parameter keys (16) through (23) select SCAN FORMAT parameters or GROUP PROGRAM parameters. Each time this key is operated, the SCAN FORMAT and GROUP PROGRAM parameters are selected alternately; the currently selected status is indicated by lamps (14) or (15).
SCAN FORMAT lamp
Lights when the SCAN FORMAT keys are selected to program parameter.
(15) GROUP PROGRAM lamp

Lights when the GROUP PROGRAM keys are selected to program parameters.
(16) LOG INTL/CHANNEL key LOG INTL (Log Interval)
Used to specify data logging conditions such as interval modes and interval time for log scan. When this key is pressed, the lamp in the key lights.
CHANNEL
Used to specify channel numbers which denote channel-group boundaries. Up to 40 groups can be specified and the RANGE, SCALE, UNIT and MODE can be specified for each group. If the GROUP PROGRAM status is selected with key (13), the CHANNEL mode is initially selected and the lamp in this key lights.
(17) SCAN CH./RANGE key

SCAN CH. (Scan Channel)
Used to specify the range of input channels from which data is to be logged during log scan. Up to 10 groups can be specified. When this key is activated, the lamp in the key lights.
RANGE
Used to specify the input measurement function range. When this key is activated, the lamp in the key lights.
(18) MONIT. INTL/SCALE key

MONIT. INTL (Monitor Interval)
Used to specify scan interval for monitor scan mode; the lamp in the key lights.
SCALE
Used to specify linear scaling operation such as engineering unit conversion; the lamp in the key lights. When this key is activated, values $A$ and $B$ for formula ( $\mathrm{X}-\mathrm{A}$ )/B can be entered in signed five digits ( $\pm 0.0001$ to 99999).
(19) FILTER/UNIT key

FILTER
Used to smooth input noise. Up to 40 measurement repetitions for averaging or the number of delays in the delay mode is specified with this key. When activated, the lamp in the key lights.

## UNIT

Used to specify an engineering unit or physical unit using a combination of up to four alphanumeric characters. When activated, the lamp in the key lights.
(20) AUTO tIME/MODE key

AUTO TIME
Used to execute automatic log-scan start/stop for the single user mode according to real clock time or elapsed timer time selected by the clock mode; the lamp in the key lights. MODE
Used to specify a primary arithmetic operation type (from 7
types) and its associated parameters; the lamp in the key lights.
(21) LABEL/CHANNEL key

LABEL
Used to enter a label with a combination of up to eight alphanumeric characters. This key also permits output of numeric data which is automatically incremented (up to 999) for each log scan by the automatic index function. When this key is pressed, the lamp in the key lights.
CHANNEL
Used to specify channel group boundaries for upper/lower limits setting. Upper/lower limits can be specified for up to 40
groups each. Upper/lower limits can also be specified for log scan data after being subjected to primary arithmetic operation. When this key is pressed, the lamp in the key lights.

## (22) CLOCK/HIGH key

CLOCK
Used to specify display and setting of time, and selection of clock/timer modes. The instrument integrates a precision digital clock providing readout of date, hour, minute and second. In the Clock mode, the clock always displays the real clock time. In the Timer mode, the clock usually displays the real clock time, but once log scan is started, it provides elapsed time readout.
When the SCAN FORMAT is selected with key (13), the lamp in this key lights to indicate initial settings.
HIGH
Used to specify an upper limit of data with a signed five-digit number with a decimal point. This key also permits entry of a relay output number and alarm comment number that are output if data exceeds the specified upper limit. When this key is pressed, the lamp in the key lights.

## (23)

CALL CH./LOW key
CALL CH. (Call Channel)
Used to activate continuous single channel display. An arbitrary input channel can be selected to display data on that Channel, after being subjected to engineering unit conversion by scaling operation at approximately one second interval. When this key is activated, the lamp in the key lights.

LOW
Used to specify a lower limit of data with up to five digits of signed number with a decimal point. It also permits entry of a relay output number and alarm comment number which are output if data exceeds the specified lower limit. When this key is activated, the lamp in the key lights.

```
Note: The indicator lamps each provided in keys (16) through indicate that the SCAN FORMAT parameter (lamp (14) lights) or the GROUP PROGRAM parameter (lamp (15) lights) selected with key (13) is valid.
```


## CLEAR key

This key is used to clear or modify the entry data which is currently shown in the display. To delete the entry data, press the SET/NEXT key (27) after operating the CLEAR key.
BACK (\#) key
This is a random access key. For parameters having one or more groups, displayed data can be returned by one line by pressing this key twice. To directry access the programming contents for a specific channel group, press the BACK (\#) key, enter the pertinent channel group number, and then activate a parameter selection key. When logging for a certain user number is to be started or stopped, operate $\quad \sharp$ G. NO $\square$ START/STOP

Comma (, ) key
This key is used to specify one or more additional functions.
If an additional function is desired during parameter
programming, operate $\square, 0-9$, for example.

SET/NEXT key
This key is used for parameter programming or to advance objective item (group) of measurement to the next and display it.
(28) ALPHA (-) key

This key permits entry of a minus sign, uppercase/lowercase alphabet and special characters. To enter an uppercase alphabetic letter or special character of $\square$ or $\%$, or a space, press this key once, then press the desired key for the pertinent character or symbol which is indicated at the bottom right of each key. To enter a lowercase alphabetic letter or special character of $\mu, \Omega$, or / (slash), press this key twice, then press the pertinent key for the desired character or symbol which is indicated at the bottom right of each key.
(29) Numeric (0-9) keys and decimal point (.) key These keys are used to enter numeric data with or without a decimal point. However, when the RANGE parameter is selected, the letters (red) indicated at the top left of each key are entered. When the MODE parameter is selected, the letters (green) indicated at the top right of each key are entered. Display

The display consists of 16 digits of fluorescent display tubes each configured in $5 \times 7$ dot matrix to display alphanumeric characters (in green) with a character size approximately 11 mm in height.
(31) User status lamps U1, U2, U3, and U4 In the Multi-user Log Scan mode, data of up to four users can be independently logged. These lamps indicate the user for which data logging is currently performed.
(32) ALARM lamp and RESET key The ALARM lamp lights if an alarm output is detected. It can be turned off by pressing the RESET key. The ALARM lamp also lights if recording paper for the internal printer goes out. In this case, load new paper in the printer and press the RESET key to turn the ALARM lamp off.
(33) GPIB status lamps

These lamps indicate the instrument's status when it is remotely controlled by a GPIB interface.
The REMOTE lamp lights when the instrument is controlled externally. While this lamp lights, all front panel key functions are disabled.

The SRQ lamp lights when the instrument is in request for service to an external controller.
The TALK lamp lights when the instrument is addressed to talk;
the LISTEN lamp lights when the instrument is addressed to listen.
(34) LOCAL key

When the instrument is externally controlled (REMOTE lamp lights), operation of this key restores control from the external unit to the front panel keys of the instrument; the REMOTE lamp goes off.
(35) Printer

The silent thermal printer can print 20 characters per line at a speed of approximately 0.5 second/line.
The recording paper can be manually pulled out of the printer by pushing up the FREE knob in the arrow direction.

The FREE knob should not be touched while the printer is operating.
The recording paper can be manually fed by turning the FEED knob in the arrow direction.


## FRONT VIEW

Fig. 3-1 TR2731 front panel description

This paragraph describes the TR2731 rear panel features in the order of encircled reference numbers shown in Figure 3-2.


Fig. 3-2 TR2731 rear panel description
(1) Power cable

The power cable has 3 -prong plug. The round prong in the center is to be grounded. The instrument should be plugged into an electrical outlet having an offset ground conductor if possible. If the instrument is to be plugged into a two-conductor outlet having no ground conductor, use the supplied plug adapter (KPR-13). In this case, be sure to connect the ground lead of the plug adapter or the GND terminal on the rear panel to the earth. If grounding is incomplete, noise may interface with measurement. See Figure 1-3.

## (2) FUSE holder

This fuse holder contains a slow-blow fuse for the primary power circuit. The fuse holder cap can be removed by turning it in the arrow direction for replacement. The ratings of the fuse are as follows:
100, 120 Vac: 2.5 A
$200,220,240$ Vac: 1.25 A

## CAUTION

When replacing the fuse, be sure to turn the POWER switch to OFF and unplug the power cable from the AC line receptacle.

## (3) GND terminal

When the supplied plug adapter is used for power connection, be sure to ground either the lead wire of the plug adapter or this GND terminal to the earth.
(4) TO TR2741 connectors

These connectors accept an interconnecting cable that connects the instrument to deliver signal and supply powers to TR2741 Sensor Terminals. Either of the two connectors may be used. The dedicated interconnecting cable MC-76 Series is available.
Cooling fan
This inhaling type cooling fan exhausts air through the ventilators provided in the top and bottom covers of the instrument. Allow sufficient space around the instrument for adequate ventilation.
(6) Slot for the Memory/Aux. Function option card This slot accommodates the TR2730-010 Memory/Aux. Function option card. No other card can be installed in this slot. Slots for I/O and Data Buffer Memory option cards These slots accept the TR2730-510 through 580 option cards. Up to four cards can be accommodated in any of the four slots. It should be noted, however, that some optional cards cannot be operated concurrently in these slots.

3-4. OPERATION OUTLINE
3-4-1. Scan Mode

The TR2731 Computing Data Logger is capable of simultaneous, parallel execution of three measurement modes: log scan, monitor scan, and call channel modes. The outline of the measurement operation is illustrated in Figure 3-3.

In the Log Scan mode, the instrument scans input channels at a specified time interval, performs arithmetic and/or logical operations on measured data, outputs the operation results to an output unit, or transfers digitally-coded data to external units such as a computer.

In the Monitor Scan mode, the instrument usually scans input channels at a shorter interval, outputs data in analog form or uses data for GO/NOGO decision using upper/lower limit identification. In the Call Channel mode, the instrument displays data of an arbitrary input channel for operator monitoring. Measurement intervals and measurement start/stop commands can be independently specified for each of the three modes, and the necessary mode can be selectively activated at any time (the display interval in the Call Channel mode is fixed to 0.5 sec.$)$.


Fig. 3-3 Outline of TR2731 measurement operations

The detailed operation sequence in the Log Scan mode is shown in Figure 3-4. The data processing time refers to the time required for arithmetic or other operations, and may reach several seconds when many operations or channel groups are specified. When no operation is specified, a data processing requires for approximately one second. The output time is the time required to output data. Output data formats are available in the GPIB, BCD parallel, and character-serial formats, as well as that for the internal printer. If the $\log$ scan interval is gradually decreased until the next scan overlaps with the preceding output time (Figure 3-4), the LOG MISSED lamp on the front panel lights and log scan operation is ignored. If the LOG MISSED lamp lights, the log scan interval setting must be increased.


Fig. 3-4 Log scan timing sequence

If, as an extreme case, the log scan interval is set to zero (continuous scan), the next scan is started immediately following the preceding data output as shown in Figure 3-5. Since the purpose of continuous scan mode is to log input signals as fast as possible, calibration is, unlike other cases, not performed at the beginning of each scan but performed after scan is completed, during processing or output time.


Fig. 3-5 Continuous log scan sequence

If the $\log$ scan, monitor scan and call channel modes are selected simultaneously, each mode is activated in the predetermined priority order. The log scan mode has the highest priority. As shown in Figure 3-6, the log scan mode is never ignored in any operation sequence. (Except when the start of $\log$ scan mode may be delayed due to data processing for monitor scan mode.)

There is no priority order between the monitor scan and call channel modes. They are executed during the periods when the $\log$ scan mode is not executed or $\log$ scan data is being output.

As the log scan interval decreases, there arise time regions in which the monitor scan or call channel mode cannot be executed. This requires special attention when performing analog data output in the monitor scan mode. As for call channel mode, a call channel can be displayed at each log scan so far as the specified call channel is included during log scan.


Fig. 3-6 Measurement sequence with shorter scan interval

## 3-4-2. Interval Mode

As shown in Figure 3-7, the log scan execution basically includes the conventional single-user log scan mode and the unique multi-user log scan mode (in which one or more users can share one data logger). In addition, the single-user log scan mode includes four selectable interval modes depending on its scan intervals.

The most basic single interval mode scans all the specified input channels at specified intervals to perform uniform measurement along the time axis. In contrast, the variable interval mode scans input channels at different intervals for each specified time division. In the multi-interval mode, data is logged at different intervals for each specified input channel group.

The external interval mode scans all the specified input channels by applying an external scan signal to the TR2730-520 BCD

Output/External Control card to permit data logging synchronous with external unit operation or status.
These operation modes are selectable either on the front panel of the instrument or from at external controller via the GPIB interface. Concurrent use of these modes (such as specifying the variable interval mode for each input channel group) is not possible.


Fig. 3-7 Data logging modes

3-4-3. Single-User and Multi-User Log Scan Modes


#### Abstract

The multi-user log scan mode is one of the unique functions of a data logger. It is useful to effectively use the data logger when a relatively long scan interval is selected. In this mode, log scan start/stop can be independently specified to permit independent data logging. Input channels can be assigned to individual users or jobs, adequate scan intervals can be specified for each of the users or jobs individually, and logged data can be output to different units as required.

In the multi-user $\log$ scan mode, the users can specify only the single interval mode and the multi-interval mode for up to two groups. Other interval modes are disabled to the users.


## 3-5. BASIC PROGRAMMING SUPPORT (SCAN FORMAT)

All measurement and arithmetic conditions for the TR2731 Data Logger are programmed with the parameter entry keys on the front panel (in local mode only). This paragraph describes the parameters and their entry procedures using the front panel keys.

Since all entry parameters are stored in micro-processor which is backed-up by batteries, they remain intact even when the instrument is switched off.

Parameter entry procedure is described in the following order:
3-5-1 Log Interval Mode (LOG INTL)
(1) Single interval mode programming ( $\because \because \because .$.

(3) Variable interval mode programming ( $\vdots . \because \because: \%$ )

3-5-2 Scan Channel Mode (SCAN CH.)
3-5-3 Monitor Interval Mode (MONIT. INTL)
(1) All channel scan mode programming ( $\because \because \because . \vdots$.
(2) Selective channel scan mode programming ( $\ldots \ldots$.

3-5-4 Filter Mode (FILTER)
3-5-5 Auto Start/Stop Mode (AUTO TIME) ( $\begin{gathered}\left.\dot{i_{0}} \text { ) }\right) ~\end{gathered}$
(1) Clock mode
(2) Timer mode

```
3-5-6 Label Mode (LABEL)
3-5-7 Clock (CLOCK), Clock Mode and Timer Mode (主. )
3-5-8 Continuous Single-Channel Display Mode (CALL CH.)
```



Fig. 3-8 Description of parameter entry keys
: When this key is pressed, the data that is entered with the numeric keyboard after selecting desired parameter is stored in internal memory. If this key is pressed a second time successively, the next group is shown in the display when the selected parameter has one or more groups.
: This key is used as a delimiter for one or more additional parameter functions.
, key, the standard value (standard parameter)
predetermined for individual parameters or a constant is automatically entered.

: This key is used to enter a negative sign for a scaling coefficient or an upper or lower limit data. It is also used to select the uppercase, lowercase, or symbol shift modes for each key. The symbols (orange), uppercase, and lowercase alphabetic letters indicated at the top right or bottom right of each key can be specified as follows:
 Selects uppercase alphabetic letters or lower symbols. Selects lowercase alphabetic letters or upper symbols.
[e.g.]


Scan format programming procedure is described in the following paragraph:

3-5-1. Log Interval Mode (LOG INTL)
[Programming contents]

(hour. minute. sec.)
00 hour 00 min. 00 sec. $0:$ Single interval $\because \because \because .$.


24 hours 00 min. $00 \mathrm{sec} \quad 3$ : External interval $\because \because \because \because \because \because:$

- Single Interval mode

The single interval mode requires only the above programming.

- Multi-Interval mode

After programming the interval value and mode, enter the following: [Programming contents]


- Variable Interval mode

After programming the interval value and mode, enter the following: [Programming contents]


- External Interval mode

The External Interval mode requires programming similar to the Single Interval mode, except that an entered interval value has no meaning (and hence any arbitrary interval value may be entered) and the mode is specified by the number 3.
(1) Single interval mode programming

minutes, enter:

o To set the interval to 30
seconds, enter:

[Simplified entry procedure]


Entry of 0 hour, 0 minute or 0
second can be simplified by
operation of the $\square$ key only.


In the single mode, entry of a
comma (, ) and the following
zero is omittable.
[Example of simplified entry]
o To set the interval to 30
seconds, enter:


- To specify continuous scan, enter:
(2)

- To set the basic interval to 1
minute, enter:

- To scan channels 1 through 5 at

1-minute interval, enter:

[Simplified entry procedure]


When the terminal number is 1 ,
it is amittable. When the
channel number is between 1 and
9, it can be specified with a
one digit number.
b. $\square, \square \rightarrow \square$

When the multiplication is 1 ,
entry of 1,1 is
omittable.
[Example of simplified entry]

- To scan channels 1 through 5 at

1-minute interval, enter:

set/mext



- To scan channels 6 through 20 at

10-minute intervals, enter: sEt/ next
$\square$ (Calls the next group.)

| 2 | 0 |
| :---: | :--- |
| 0 |  |
| 0 |  |

* If only one sensor terminal is
attached to the instrument, the
terminal number will be omitted
from the readout as shown at right.

- To scan channel 21 of terminal 1
through channel 40 of terminal 2
at 30 -minute intervals, enter:
SET/ NEXT
(Calls the next group.)



## 3


o To modify scan interval for
Channel 21 of terminal 1 through
Channel 20 of terminal 2 into 20
minutes, enter:


- To scan channel 21 through
channel 40 of terminal 2 at

30-minute intervals, enter:
$\square$
(Calls the next group.)


- To recall the preceding entry data for checking, operate:

- To directry read out group 5, operate:


Programming Note
Boundary channel numbers must be allocated in
ascending order to group numbers M1 through M8. If a smaller channel number is allocated to a greater group number, the entry will be unsuccessful, with an error message shown in the display.

The allowable multiple number is up to 200, (basic interval $x$ multiple number) must not exceed 24 hours 00 minute 00 second. If $\log$ scan is performed with a multiplication of basic interval exceeding 24 hours, the interval time is not guaranteed.

- To delete the second boundary
channel, operate:

(Calls the 2nd group.)


SET/NEXT

(Deletes it.)


- To scan up to channel 60 of
terminal 2 in group 7 at
10-minute intervals, leaving
group 5 and 6 unspecified, enter:

| (BACK) | LOG NTL | LOG MTL | 2. \& 20000 |  | \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 㗆 | 7 |  | ¢ |  |  |

(Calls the 7 th group.)


- To sequentially recall each group
for checking, enter:


| : |  | : |
| :---: | :---: | :---: |

(Calls the preceding group.)

HL weth in

कीbume, me:
(3) Variable interval mode programming


- To set the basic interval to 5
minutes, operate:

group.)
(When specified in the clock mode)
- To $\log$ data up to 14 days 10
hours 00 minute at 5-minute
intervals, enter:

- To $\log$ data up to 14 days 14
hours 00 minute at 30 -minute
intervals:
sEt/MEXT
(Calls the next group.)

- To log data up to 16 days 8 hours

00 minute at 2-hour intervals,
operate:
SET/ NEXT
(Calls the next group.)


1


8


SET/MEXT


Basic interval x 24

- To delete the boundary time
setting for the and group (V2), enter:

specified.)

For switching between the clock
and timer modes, see the
description for clock setting
procedure.
O To log data for 2 hours from
measurement start at 5-minute
intervals, enter:


```
Basic interval x 1
```

[Simplified entry procedure]
a. $0 \rightarrow \square \rightarrow \square$

Entry of 0 day, 0 hour, or 0
minute can be simplified by the
operation of the $\square$ key only.
b.


When the coefficient is 1 ,
entry of $\quad, \quad 1$ is
omittable.


SET/MEXT


- To $\log$ data between 2 and 4 hours
after measurement start at
15-minute intervals, enter:

o To log data for 2 days at 1 hour
intervals, enter:

- To $\log$ data for 3 days at 2 hour
intervals enter:

- To read the preceding group,
operate:

- To call the next group, press: set/mext



## Programming Notes

1. Boundary times (in the timer mode, elapsed times from measurement start) must be arranged in ascending order according to group numbers V 1 through V6. If they are arranged in the reversed order, time programming will not be entered, with an error message shown in the display. The maximum programmable boundary time is 99 days, 23 hours, and 59 minutes. While the maximum allowable multiple number is 200, (basic interval x multiple number) must not exceed 24 hours, 00 minute, and 00 second. If $\log$ scan is performed with a multiplication of basic interval exceeding 24 hours, the interval time will not be guaranteed.
2. A boundary time setting may indicate either elapsed times from measurement start or real clock time depending on whether the timer mode or clock mode is specified (to be described later).
(4) External interval mode programming


- To select the external interval
mode, operate:


Interval value is arbitrary.
SET/MEXT


Specifies the external interval mode.

Although an interval value setting is meaningless in the external interval mode, it is necessary to operate keys $\square$, 3 after setting an arbitrary interval value. It is not possible to directly specify the external interval mode.
[Programming contents]

| Start channels of sections | $\square,$Stop channels of sections <br> 101 |
| :---: | :---: |
| Maximum channel number | 101 |
| Maximum channel number |  |

In the Scan Channel mode, the start and stop channels of channel sections to be measured should be specified. Channels requiring no measurement are excluded from those channel sections. If only one channel is to be specified, it should be set up as a section start channel.

Up to 10 channel sections are programmable.
[Programming procedure]
To scan channels 1 through 40 and 56 of terminal 1 and channels 1 through 20 of terminal 2:
o First program Channels 101 through 140
with:
SCAN

$\square$


- Then program channel 156 with: SET/ NEXT

> (Calls the next group.)

[Simplified entry procedure]
a.

$\square$
$\square$
$\square$ $\rightarrow 5$ 6

When programming channel numbers of terminal 1, the terminal number can be omitted.
b. When programming a single channel, entry of only the start channel
number is required.

- Next program channels 201 through 220
with:
SET/NEXT
(Calls the next group.)
 terminal 1 to the above programming contents, follow either of the two programming procedures shown below.
[Procedure I]
$\square$ (Calls the next group.)


6


When channel numbers are newly
programmed for the unspecified group,
group numbers are automatically
rearranged according to the order of
channel numbers. However, if a
channel section to be programmed
overlaps with an already programmed
channel section, this channel section
programming causes error generation.
[Procedure II]

$\square$
(Specify group number to add channels.)


SET/MEXT
5


Similar to procedure I, automatic
rearrangement and error detection are
performed.

- To skip channels 111 through 120 from
the above programming:
[Procedure]
Call section 1 and modify channel
section programming for channels
101-140 into channels 101-110, then
add a channel section specification
for channels 121-140.

(Calls the group for section 1.)

(To add channels, specify group number
0.)

- Check that channel sections of 10110 .
$\underbrace{121 \quad 140} 156 \underbrace{160 \quad 165} 204 \quad 200$ are eventually
programed:

(Calls group 1.)
$\square^{\text {SET/MEXT }}$ (Calls the next group.)
$\square^{\text {SET/NEXT }}$ (Calls the next group.)
$\square^{\text {SET/NEXT }}$ (Calls the next group.)

SET/NEXT
(Calls the next group.)

- To skip channels 160 through 165,
enter:

(Calls group 4.)

(Deletes old group 4.)
- Check the contents of the preceding


The contents of group 5 are replaced to group 4. group with:


## Programming Notes

1. Section start and stop channel numbers must not exceed the maximum channel number of the pertinent channel configuration. If specified, an error message will be shown in the display.

2. If the system consists only of one terminal, termial number 1 will not be shown in the display.

3. If start and stop channel numbers are specified in descending order, they are automatically reversed. [egg.]

4. If the same channel number or numbers are already specified in another group or parts of channel sections overlap with each other, operation of the SET/NEXT key will cause an error generation with the invalid programming. In such a case, first delete the unnecessary section, then enter a new channel section.
[Programming contents]

| Interval value |  |
| :--- | :--- |
| [Minutes. second] |  |
| 00 min. 00 sec. | $0:$ All channel scan |
| Interval mode |  |
| 60 min. 00 sec. | $1:$ Selective channel scan |

If output channel specification for analog output option is required in the all channel scan mode or if execution of selective channel scan is desired after completing the above setting, perform the following programming (max. number of channels: 12):
[Programming contents]



- To perform monitor scan in the all
channel scan mode at 10 -second
intervals, enter:

[Simplified entry procedure]


Entry of 0 minute can be simplified
by operation of the $\quad \cdot$ key.
b. $\square, \square \rightarrow \square$

Specification of the all channel
mode can be simplified by operation
of the, key.

- To set the interval to 10 seconds,
enter:

o To specify continuous scan, enter:


Mabe an
When making channel assignments to
analog output option card, output the
least significant 3 digits of channel
1 of terminal 1 to channel 1 of the
analog output option card, and output
least significant 3 digits of channel
10 of terminal 1 to channel 2 of the
analog output option card, with offset.
o To assign channel 1 of terminal 1 to

Channel 1 of the analog output option


3 digits
card, enter:
SET/MEXT
(Calls the next group.)


No offset
[Simplified entry procedure]
a.


When the output digit positions and offset specification are both normal, key entry between the first , and last 0 is omittable.

- To assign channel 1 of the terminal 1
to channel 1 of the analog output
option card, enter:



## mel when, ot

- To output the least significant 3
digits of channel 10 to channel 2 of
the analog output option card with
offset, enter:
SET/ NEXT
$\square$ (Calls the next group.)

o To output the intermediate significant
3 digits of channel 10 of terminal 2
to channel 5 of the analog output
option card with no offset, enter:

(Calls group 5.)

[Simplified entry procedure]


When no offset is specified, entry of
$\square$ and 0 is omittable.


- To cancel the specification of channel

2 of the analog output option card,
enter:


- To perform monitor scan on only five
channels of $5,10,15,20$, and 25 at
15-second intervals, and output their
most significant 3 digits to channels
1 through 5 of the analog output
option card, with no offset, enter:
mont inti

$\rightarrow$ Selective channel scan mode SET/NEXT


We imit, Em, +t


Most significant 3 digits SET/ NEXT


SET/NEXT

mes en, c
me inch, aft


3-5-4. Filter Mode (FILTER)
[Programming contents]

Number of averaging

or delay

(If 0, 1, or more than 41 is specified, "E03" will be shown in the display.)
[Programming procedure]

- To average the measurement results of
ten times scanning repetition on each
channel, enter:


SET/ NEXT

Currently programmed F value (or blank)

[Simplified entry procedure]


When specifying the averaging mode, entry of $\quad, \quad$ and 0 is omittable.


- To clear the filter mode specification, press:

o To log the 40 th measurement result for
each channel (the delay mode), press:


SET/NEXT


3-5-5. Automatic Start/Stop Mode (AUTO TIME)
[Programming contents]

Measurement start or stop time
[Day, hour, minute]
00 day 00 hour 00 minute


99 days 23 hours 59 minutes

Note: This mode is not available in the multi-user mode.

## [Programming procedure]

(In the clock mode)
o To start scanning at 10 hours 00
minute of the 14 th day and stop it at

18 hours 00 minute of 15 th day, enter:


O To start scanning at 8 hours 00 minute and stop it at 18 hours 00 minute every day, enter:


If 0 day is specified in the clock
mode, scanning is started and stopped
at specified times every day.

## (In the timer mode)

o To start scanning one hour after data
logging start and stop it five hours
later, enter:

[Simplified entry procedure]
0


Entry of 0 day, 0 hour or 0 minute can
be simplified with operation of the

- key .
o To clear the start time, enter:
SET/nExT


ST metherm


| $\cdots$ | : | ! $\ddagger$ |
| :---: | :---: | :---: |

- To check the stop time, enter:

SET/NEXT
$\square$

```
TF Qes,%%:
```

CAUTION
Start and stop times may indicate elapsed times or real clock time depending on whether the timer mode or clock mode is selected.

3-5-6. -Label (LABEL)
[Programming contents]

Label characters


Up to 8 characters

0: Normal mode $\quad$ Normal
1: Index number mode ID

In the ID mode, up to 5 characters.

Characters available for label

MPHAA

## CAUTION

In the Multi-User mode, the Index Number mode is not activated. On the listing output, a decimal point "." appears as space. A zero (0) at the 8th character location in the normal mode and at the 5 th character location in the Index Number mode appears as a space on the listing output.

## [Programming procedure]



When specifying the normal mode,

omittable.

- To delete the specified label, enter:

- To specify label "TEST/" and select
the Index Number mode, enter as
follows:



## Programming Note

If five or more characters are specified before operation of the $\square, 1$ KET/NEXT keys in the Index Number mode, the least significant five characters are defined as a fixed label, which is followed by three digits number as an index number. The three digit number (000 to 999) is incremented upon each log scan when printed out. In the Multi-User mode, however, the three digit number appears as a three-digit space on the printout.

3-5-7. Clock Mode (CLOCK)
[Programming contents]

[Programming procedure]

- To set the clock to 14 days 8 hours 00
minute (in the clock mode), enter as
follows:



Programming Note
The clock is reset to 00 second when the $\square^{\text {SET/MEXT }}$ key is pressed after day, hour, and minute are corrected.

When switching operation mode from the timer into clock or vice versa, operate the $\square^{\text {SET/NEXT }}$ key (for the clock mode) or the $\square, \quad 1$ SET/MEXT keys (for timer mode) after programming the desired time.
[Programming contents]

Call channel number

101

Maximum channel number
[Programming procedure]

- To call channel 10 on terminal 1 for continuous display:


FORMAT


MEH !"कbm
[Simplified entry procedure]


Terminal number 1 is omittable. If
the system consists of only one terminal, the terminal number is omitted from the readout.

## CAUTIONS

1. If the specified call channel is not included in the log scan channel range, a blank or the preceding channel may be shown in the display when log scan is started in the continuous mode.
2. When the call channel operation is executed, the alarm lamp on the front panel of the instrument will go off.

## 3-6. BASIC PROGRAMMING PROCEDURE (FUNCTION)

This paragraph describes the function group programming procedure which is a part of group programming.

| Group No. | Group channel | Range | Scaling coefficients A, B | Unic | Arithmetic operation mode | Secondary arithmetic operation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 120 CH . | T (CC) | - | - | $\mathrm{N}, 101 \mathrm{CH}$. |  |
| 2 | 130 CH . | 200 mV | 0, 1.1 | - | - | Max. Min. Ave. |
| 3 | 140 CH . | 20 mV | 0.2, 1 | kg | MAX, 5N |  |
| 4 | 220 CH . | $\begin{aligned} & \mathrm{K}(C A) \\ & \text { External } \\ & \text { reference } \\ & \text { junction } \\ & \text { compensation } \end{aligned}$ | - | - | N, 201 CH . | Dev. <br> Source <br> data output OFF |
| 5 | 240 CH . | Pt, 4W | - | - | I |  |
| 6 | 310 CH . | $\mathrm{R}(\mathrm{PR})$ internal |  |  |  |  |
| 7 |  |  |  |  |  |  |
| 8 |  |  |  |  |  |  |
| 38 |  | - |  |  | $\xrightarrow{\text { S }}$ |  |
| 38 |  |  |  |  |  |  |
| 39 |  |  |  |  |  |  |
| 40 |  |  |  |  |  |  |

The function group programming specifies boundary channels for each channel group, measurement range for a selected group, scaling operation coefficients if any, engineering units different from the selected measurement range, and primary or secondary arithmetic operation processings.

Channels having the same range but different scaling coefficients must be allocated to different groups.

Already programmed channel groups can be divided into smaller groups or united into larger groups with the channel insertion or deletion function. Up to 40 groups can be specified.

3-6-1. Group Channel (CHANNEL)
[Programming contents]

Group boundary channel

101
1
Maximum channel number

Channels having the same range, the same scaling coefficient, the same engineering unit and the same arithmetic are allocated to one group. Group channel programming specifies the boundary channels for each group.
[Programming procedure]

- The following programming example specifies:

Channels 1 through 10 on terminal 1 for group 1,
Channels 11 through 20 on terminal 1 for group 2,
Channels 21 through 40 on terminal 1 for group 3,
Channels 1 through 20 on terminal 2 for group 4, and
Channels 21 through 40 on terminal 2 for group 5. Currently programmed


Eal Heh
(Specifies channel 10.)
[Simplified entry procedure]

Terminal number 1 is omittable. If
the system consists only of one
terminal, the terminal number is
omitted from the readout.
SET/NEXT
(Calls the next group.)

(Specifies channel 20.)
SET/NEXT
$\square$ (Calls the next group.)



De ingen
(Specifies channel 40.)
SET/NEXT

(Calls the next group.)

(Specifies channel 220.)
2020


(Specifies channel 240.)


```
When adding another group containing
Channels 21 through 30 on terminal 1
to the above channel groups, follow
either of the following two adding
procedures:
```


## [Adding procedure I]

- Call the group which is unspecified yet for the additional group with set/next
- Enter the boundary channel number for the additional group with 3 0 . 0 .
 ]


Inserted group number and
[Adding procedure II]

- Specify the insert mode with $\begin{array}{r}\text { (BACK) } \\ \square \\ \hline\end{array}$
- Specify the boundary channel number
 for the additional group with

Inserted group number and F channel


The resulting channel group map is as
follows:


- To sequentially call boundary channels
for each group, enter as follows:

Call group 1 with $\quad$| $(\mathrm{BACK})$ |
| :--- |


channel Call group 2 with $\square$ •
पe Ied
Call group 3 with $\stackrel{\text { senerser }}{\square}$ एक
Call group 4 with $\square^{\text {SET/NEXT }}$.

Call group 5 with $\square^{\text {SET/MEXT }}$.

Call group 6 with $\square^{\text {SET/MEXT }}$.

|  | -ッ: |
| :---: | :---: |

- To delete boundary channel 10 for
group 1 and allocate up to channel 20
to group 1, enter:
(BACK)


The resulting channel group map is as

follows:


## Programming Notes

1. When one or more group boundary channels are deleted, the measurement ranges and scaling coefficients for the old adjacent group are allocated to the channels of the deleted group number. When a group is inserted, a measurement range of 20 mV is selected but no other parameters are specified for the new group.
2. If a group to be inserted has one or more channels of which numbers already exist in other group or groups, the inserting entry is invalid, with an error message

3. Measurement range and scaling coefficient can not be specified for groups for which no group boundary channels are specified. Group boundary channels must first be specified.
[Programming contents]
(1) $D C$ voltage range

> Measurement range

| 20 mV | 20 mV |
| :---: | :---: |
| 200 m | Normal |
| 1 | 200 mV |
| 20 | 2 V |
| 20 V |  |
| 20 V |  |

(2) Thermocouple range

(3) Platinum RTD range

Measurement range $\square$, \begin{tabular}{l}

Specification for | 3-wire, 4-wire, |
| :--- |
| 4-wire with high- |
| resolution |

\end{tabular}


(4) Contact range
aux.

(5) Special range (linearization with special specifications, etc.)

[Simplified entry procedure]


If reference junction
compensation is internal and
linearization is to be done for
thermocouple range, key entry
between the first,$\square$ and the
last 0 is omittable.

- To specify the 200 mV range for group 2, enter:
SET/NEXT
(Calls the next group.)
200 mV
SET/ nExT
- To specify the 2 V range for
group 3, enter:
SET/NEXT
(Calls the next group.)


2 n
group 4 and external reference
junction compensation, enter:

[Simplified entry procedure


If linearization is to be done
for measurement using
thermocouples, entry of the last
0 is omittable.

- To specify the four-wire RTD

[Simplified entry procedure]
a.

$\square$
$\square$
$\square$


SET/NEXT

If linearization is to be
specified when programming the
RTD range, entry of the last
00 is omittable.
b. If linearization is to be
performed for the three-wire

RTD range, key operation


- To modify the range for group 3
into 20 V , enter:
(back)


20 V
3
SET/NEXT


Programming Note
If no boundary channel is specified for a group number, "n------" will be shown in the display and the buzzer will sound. In such a case, first specify the group boundary channel.


- To specify channel 310 as the boundary channel for group 6 , enter:

$\square$
(Calls the group channel.)
Channel

(Calls the range.)
- To specify the $R(P R 13 \%)$ range


## Gue exa

for group 6, enter:
PR:S, R, $B$

$\square$
(R)
,

8

[Simplified entry procedure]
If the (S) range, internal
compensation and linearization
are to be specified for the PR
range of a thermocouple, the
entry can be simplified as


Programming Notes

1. Operation of the $\square^{\text {CLEAR }} \quad \square^{\text {SET/NEXT }}$ keys will reset the range to the normal range of 20 mV .
2. When specifying a thermocouple or platinum RTD range for a group, make sure that the channel configuration of that group does not conflict with the sensor terminal configuration. If a platinum RTD range is specified for a thermocouple terminal or vice versa, the measured data will not be guaranteed.

3-6-3. Scaling Coefficient (SCALE)

In scaling operations, coefficient $A$ is subtracted from input measurement data $X$, and the result is divided by another coefficient $B$ to accomplish engineering unit conversion.
[Programming contents]
Coefficient $A$ value $\quad, \quad Y=\frac{X-A}{B}$

$$
0.0000 \text { to } \pm 99999 \quad(B \neq 0)
$$

[Programming procedure]

- To specify coefficients $A=0$ and $B=1.1$
for group 2, enter as follows:

- To specify coefficients $A=0.2$ and $B=1$
for group 3, enter:
SET/NEXT
(Calls the next group.)

[Simplified entry procedure] If coefficient $B$ is 1 , its entry is omittable as follows:


3-6-4. Unit (UNIT)

Up to four alphanumeric characters or symbols can be specified for each group.
[Programming contents]

Alphanumeric characters or symbols

There are 69 types of available characters: 0 to 9, decimal point (.), A to $Z$, a to $z, \mu, \Omega, \%, \square$, slash (/), and space.
[Programming procedure]

- To specify the kilogram (kg) unit for
group 3, enter:


1. If no unit is specified, the unit for the selected measurement range is automatically attached:

20 mV
200 mV
2 V
20 V
Thermocouple (with linearization)
Platinum RTD (with linearization)
Thermocouple (with no linearization) Platinum RTD (with no linearization)

V

2. Operation of $\square$

 keys specifies lowercase alphabetic letters or symbols indicated at the top right of each key. Operation of keys specifies uppercase alphabetic letters or symbols indicated at the bottom right of each key.
3. If the $\square$ key is not operated, operation of the numeric keys (0-9) and decimal point key (.) enters the corresponding numeric data or a decimal point, whereas all other keys provide their specific functions.
4. Mark "." appears as a space on the listing printout.

- To specify the cubic meter ( $\mathrm{m}^{3}$ ) unit
for group 4, enter:
SET/NEXT
(Calls the next group.)

- To check the boundary channel for
group 4, enter:

channel


Bes


- To check the range for group 4, enter:



## 

O To check the scaling coefficient for
group 4, enter:


- To check the unit specified for group

4, enter:


- To clear the unit specified for group

4, enter:

o To check the unit specified for group
3, enter:


H

3-6-5. Arithmetic Modes (MODE)

Specifiable arithmetic include seven types of primary arithmetic operations, difference from other channels ( $N$ ), difference from initial value ( I), difference from the preceding measured data ( t ), maximum of the specified repetitions of scan, minimum of the specified repetitions of scan, average of the specified repetitions of scan, and total of the specified repetitions of scan. Those arithmetic operations are specified for each group individually to output result.


- To determine the differences between
channel 1 on terminal 2 and each
channel of group 4, enter:

- To determine the differences between an initial value and each channel of group 5, enter:
SET/NEXT
(Calls the next group.)

- To determine the maximum of five
repetitions of sampling for group 3 ,
enter as follows:
Call the preceding group with


Call the preceding group with | (BACK) |
| :---: |



|  | (1) |  |
| :---: | :---: | :---: |

## Programming Notes

1. If no arithmetic operation is specified for a group, the primary arithmetic operation processing for that group will not be executed.
2. If no boundary channel is specified for a group, "-_-_--" will be shown in the display and the buzzer will sound. In such a case, first specify the group boundary channel.
3. If OVER or SENS. OUT takes place in a channel to be subtracted for N computation or in the initial measurement result of $I$ computation, COMP ERR will be displayed.
4. If an OVER or SENS. OUT takes place even once in the results of the MAX., MIN., AVE., or TTL operations, OVER or SENS OUT will be displayed.

The function of the TR2730-010 Memory/Aux. Function option card includes the secondary arithmetic operation function, which enables statistical operations on the data logged at one time in a specified group. The operations include maximum (Max.), minimum (Min.), average (Ave.), difference between the maximum and minimum ( $p-p$ ), standard deviation (SD), deviations between each channel (Dev.), difference from the specified channel (SUB), product with the specified channel (MUL), and ratio to the specified channel (DIV). This item describes programming procedures for the secondary arithmetic operations.

(Multiplication with the specified channel)
$\mathfrak{O}$
:OA.
品:
:ay an (Average of a group)
:".
(Standard deviation in a group)
 of that group)

Of the above nine types of operations, up to three different operations can be simultaneously specified for the Max., Min., Ave., p-p, SD, and Dev. operations.
Source data output inhibit can also be specified.
[Programming contents]
(1) SUB, MUL and DIV operations

| Type of arithmetic operation | , | Channel number | , |  | Source data output inhibit specification |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 101 |  | - | Output enable | Normal |
| SUB |  |  |  |  | Output inhibit |  |
| 2 MUL |  | Maximum Channel number |  |  |  |  |
| 3 DIV |  |  |  |  |  |  |

(2) Max., Min., Ave., $p-p, S D$, and Dev operations


| 4 | Max | 7 | p-p |
| :--- | :--- | ---: | :--- |
| 5 | Min | 8 | SD |
| 6 | Ave | 9 | Dev |



This paragraph describes the alarm group programing procedure for upper/lower limit identification and output of its results.

| Group | Group | Upper limit value (HIGH) |  |  | Lower limit value (LOW) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | Channel and mode |  | Relay No. | Comment No. |  | Relay No. | Comment No. |
| 1 | 101 ch, Log | $30^{\circ} \mathrm{C}$ | 1 | 1 | $20^{\circ} \mathrm{C}$ | 2 | 2 |
| 2 | $110 \mathrm{ch}, \mathrm{Log}$ | $1.2{ }^{\circ} \mathrm{C}$ | 3 |  | $-1^{\circ} \mathrm{C}$ | 4 |  |
| 3 | 115 ch , mon | 150 mV |  | 3 | 100 mV | 12 | 4 |
| 4 | $120 \mathrm{ch}, \mathrm{mon}$ | 180 mV | 13 | 3 | 150 mV | 14 | 4 |
| 5 | $130 \mathrm{ch}, \mathrm{Log}$ | 80 mV | 17 |  | 20 mV | 18 |  |
| 6 | $135 \mathrm{ch}, \mathrm{Log}$ | 0.8 kg | 19 |  | 0.5 kg | 20 |  |
|  |  |  |  |  |  |  |  |
| 38 |  |  |  |  |  |  |  |
| 39 |  |  |  |  |  |  |  |
| 40 |  |  |  |  |  |  |  |

In alarm group programming, group boundary channels, upper limit value, alarm output relay number, comment number for upper limit, lower limit value, alarm output relay number and comment number for lower limit are specified for each group.

Alarm groups are completely independent of function groups described in the preceding paragraph (3-6), and hence upper/lower limit identification can be performed on arbitrary specified alarm groups. As shown in the following table, the channels to be scanned in scan channel mode are specified first, and the ranges, etc. for those channels are specified independently of the channels to be scanned. In addition, the upper and lower limit values for alarm output are also specified independently of function group specification. Up to 40 alarm groups can be specified.


3-7-1. Group Channel (CHANNEL)
[Programming contents]


In group channel programming, channels having the same upper and lower limits are assigned to one group and its boundary channel is specified. At that time, it is possible to specify in which scan mode the upper and lower limit identification is to be done. If the monitor ( 0 ) is specified, upper/lower limit identification is made on the data obtained by monitor scan. If the log (1) is specified, upper/lower limit identification is made on the data obtained by log scan. If monitor/log (2) is specified, upper/lower limit identification is made during monitor scan. If over-limit data is detected, $\log$ scan is automatically initiated at that point. The log scan is stopped when data is found to be within the upper and lower limits as a result of limit identification during monitor scan. [Programming procedure]

- To specify only channel 101 for group

1 and perform limit comparison during
log scan, enter as follows:


[Simplified entry procedure]


If the terminal number is 1 , its entry
is omittable.
If the system consists only of one
terminal, the terminal number is
omitted from the readout.


- To specify channels 102 through 110
for group 2 and perform limit
comparison during log scan, enter:

- To specify channels 111 through 115
for group 3 and perform limit
comparison during monitor scan, enter:

[Simplified entry procedure]


When specifying the monitor mode,
entry of $\quad, \quad 0$ is omittable.

- To specify channels 116 through 120
for group 4 and perform limit
comparison during monitor scan, enter
as follows:
Call the next group with
SET/ NEXT

- To specify channels 121 through 130
for group 5 and perform limit
comparison during log scan, enter as
follows:
Call the next group with $\square^{\text {set/ next }}$ -
De
Operate 3 0
SET/NEXT
1


- To check the boundary channel for group 4, enter:


- To specify channels 131 through 135
for group 6 and perform limit
comparison during log scan, enter as
follows:



## Programming Notes

1. Inadvertent entry of numerical data can be cleared by operating the CLEAR key; the preceding data will be shown in the display.
[e.g.] To modify the boundary channel for group 5 from channel 130 into channel 128 , enter as follows: Call the next group with


3 (You have
045 1304, wa
GES
inadvertently entered
number 3 instead of number 28.)
Clear the wrong data with

Clear.
Operate 2,8

1
set/mext
Press


保

2. If you have noticed the entry of wrong data after
pressing the $\square$ key, try correct data entry according to the usual modification procedure from the beginning.
[Programming contents]

[Programming procedure]

- To specify an upper-limit temperature
of $30^{\circ} \mathrm{C}$ for group 1 and activate
relay number 1 and print alarm comment

1 if the temperature exceeds this
upper limit, enter as follows:


- To specify an upper-limit temperature
of $1.2^{\circ} \mathrm{C}$ for group 2 and output
relay number 3, enter as follows:
Call the next group with $\square^{\text {set/hext }}$


```
O To specify an upper-limit voltage of
    150 mV for group 3 and alarm comment
    number 3 without specifying an output
    relay number, enter as follows:
    Call the next group with QET/NEXT \
OM, 5, 0
```

3-7-3. Lower Limit Value (LOW)
[Programming contents]

[Programming procedure]

- Lower limits can be specified in much
the same way as upper limits
programming.


1. If the TR2730-540 card is not installed when specifying a
 displayed.
2. If the TR2730-010 card is not installed when specifying an alarm comment number, an error will result.
3. When specifying only an alarm comment number without specifying a relay number, operate keys


No and $\quad$, to skip the relay number.
4. To clear an upper limit specification, enter as follows:


## 3-7-4. Alarm Comment

The functions of the TR2730-010 Memory/Aux. Function option card include the alarm comment printout function. This item describes alarm comment programming procedure. [Programming contents]

```
Character array of up to 12 characters
```

Up to 4 comments are programmable (with use of TR2730-010). [Programming procedure] - TO specify "S. TEMP HIGH" for comment

```
    number 1, enter as follows:
```

- TO specify "S. TEMP LOW" for comment
number 2, enter as follows:
SET/MEXT

(Calls the next group.)


```
ge
```

- To read out comment number 1, enter:

- To clear comment number 1, enter:


```
|
```


## Programming Notes

1. Similar to label programming, up to 69 types of characters are available for alarm comments: 0 to 9, decimal point (.), uppercase alphabetic letters, lowercase alphabetic letters, $\Omega, \mu, \%, s l a s h(/), ~$, and space.
$\square^{\text {ALPHA }} \quad$ ALPHA $\quad-\quad$ selects lowercase letters
indicated at the top right of each key.

selects uppercase letters indicated at the bottom right of each key.
2. If more than 12 characters are specified, the oldest characters (least significant digits) are discarded.

3-8. OPERATING INSTRUCTIONS

This paragraph describes operating instructions for the TR2731 Computing Data Logger. The descriptions covered in this paragraph may be used as a guidance to check if the instrument is properly operating.

3-8-1. Preparations
(1) Make sure that the local line voltage is identical to that indicated on the rear panel of the instrument. After making sure that the POWER switch is in the OFF position, plug the power cable into an AC receptacle.
(2) Connect the TR2741 Sensor Terminals to the TR2731 Mainframe with the supplied or optional interconnecting cables. The details of cable connections are described in item 2-5-1.
(3) Set the switches on the real panel of the TR2741 Sensor Terminals according to operating conditions. For the details of switch setting procedures, see item 2-5-3. All switch settings should be done leaving the POWER switch to OFF. After establishing the above preliminary operations, turn the POWER switch to ON.

3-8-2. Operation Check after Power On

After powering the TR2731/2741 system, perform its operation check according to the flowchart shown in Figure 3-9.

## CAUTION

When the TR2731 is to be operated for the first time, erase
all internal parameters by pressing the $\square$ CLEAR and then set/mext

keys for initialization while all dots in the display are turned on after operation check.


Fig. 3-9 TR2731/2741 system operation check
(1) Measurement start and stop
a. Single user log mode

Operation of the LOG key (provided in the START/STOP section) will start log scan sequence; the lamp in the key lights.

A second operation of the LOG key will stop log scan; the lamp in the key goes off.
To externally control log scan measurement start/stop in the single user log mode, connect a start/stop command switch to the EXT. START/STOP connector on the rear panel of the TR2741.

The same control command are also enabled through the TR2730-520 BCD Output/External Control option card.

Note: When the external start/stop command switch is used, a first operation starts log scan and a second operation stops log scan. The front LOG key, EXT. START/STOP connector, and start/stop command from the TR2730-520 card provide identical functions in parallel. Therefore, log scan started with one feature may be stopped with another feature.
b. Multi-user log mode

To initiate multi-user log scan, first specify the user number desired to be measured with $\quad$ (BACK) $\square$ (1-4) keys, then press the LOG key (provided in the START/STOP section). Log scan for the specified user is initiated, the lamp in the LOG key lights, and the specified user number (U1 through U4) is shown in the right end of the display. To stop log scan, similarly specify the user number with the $\quad$ ( $\# C K) \quad \square(1-4)$ keys and then press the LOG key. The pertinent user number in the LeD display goes off. If log scan for all users is stopped, the lamp in the LOG key also goes off.

Log scan measurement start/stop for individual users can be controlled by using the TR2730-520 BCD Output/External Control option card.

## CAUTIONS

1. Similar to the single user log mode, the front panel start/stop key and external start/stop command provide identical functions in parallel for individual users. Therefore, utmost care should be exercised on the external start-to-stop and stop-to-start commands.
2. To specify simultaneous measurement start/stop for all users in the multi-user log mode, enter as follows:

3. Before initiating $\log$ scan in the multi-user $\log$ mode, the multi-interval mode must be selected and interval times (basic interval $x$ multiple) must be specified for each channel group.

| User 1 |  |  | $\begin{aligned} & \bigcirc \bigcirc \bigcirc \bigcirc \vdots \vdots \vdots \\ & \bigcirc \bigcirc \bigcirc \vdots \vdots \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| User 2 |  |  | $\bigcirc \bigcirc \bigcirc \vdots: \vdots$ $\bigcirc \bigcirc \bigcirc$ |
| User 3 |  |  | $\bigcirc \bigcirc \bigcirc \vdots$ $\bigcirc \bigcirc \bigcirc$ |
| User 4 |  |  | $\bigcirc \bigcirc \bigcirc \vdots: \vdots$ |

Since boundary channel numbers of multi-interval are specified for individual users, they must be programmed in advance according to users. See item 3-5-1.
c. Single log scan

Operation of the SINGLE key (provided in the START/STOP section) will initiate only a single log scan sequence and delivers the logged data; the lamp in the SINGLE key lights. After the data is output, the sequence automatically stops and the lamp in the key goes off.
d. Monitor scan

Operation of the MONITOR key (provided in the START/STOP section) will initiate monitor scan sequence; the lamp in the MONITOR key lights.

A second operation of the MONITOR key will stop the monitor scan; the lamp in the key goes off.
(2) Scan display and scan stop

The LOG SCAN, MONIT. SCAN and LOG MISSED lamps go on and off at the timings shown in Figure 3-10.


Fig. 3-10 Scan indicators on/off timings

While both log scan and monitor scan are immediately stopped if a stop command is issued during input scan, they are continued until the current data is output if a stop command is issued during data processing or output after input scan is completed.


Fig. 3-11 Scan stop timing
(3) Print and alarm printout Operation of the LOG DATA key (provided in the PRINTER section) will deliver log scan data in each mode to the internal printer; the lamp in the LOG DATA key lights. If data delivery to the internal printer is not required, press the LOG DATA key a second time to inhibit data output; the lamp in the key goes off. Operation of the ALM DATA key (provided in the PRINTER section) will deliver over-limit alarm data for $\log$ scan or monitor scan to the internal printer; the lamp in the ALM DATA key lights. If an over-limit measurement occurs during log scan, data of all scan channels are once delivered to the internal printer. If error data is generated during monitor scan, the data of the pertinent channel is delivered to the internal printer upon error generation and recovery from the error together with their generation times.
(4) Program listing

Operation of the PROGRAM LIST key will print out a list of programmed parameters; the lamp in the PROGRAM LIST key lights. Upon the end of listing, the output operation automatically stops and the lamp in the key goes off. To print out the scan format programming contents, activate the SCAN FORMAT indicator lamp before pressing the PROGRAM LIST key. If the lamp in the OUTPUT ENABLE key is gone off, the program listing is delivered to the internal printer; if the lamp is come on, the program listing is delivered to an external unit via the TR2730-560 Serial Data Output option card. To print out group programming contents, the FUNCTION programming contents and ALARM programming contents must be specified separately. For FUNCTION programming contents, first activate the GROUP PROGRAM indicator lamp, press the CHANNEL, RANGE, SCALE, UNIT, or MODE key to select the desired function, then press the PROGRAM LIST key. For ALARM programming contents, first activate the GROUP PROGRAM indicator lamp, press the CHANNEL, HIGH, or LOW key to select the desired alarm mode, then press the PROGRAM LIST key.


Fig. 3-12 Program listing outputs
(5) Output specification Operation of the OUTPUT ENABLE key enables log scan data output to the TR2730-520 BCD Output/External Control option card, and log scan data and program listing output to the TR2730-560 Serial Data Output option card; the lamp in the key lights.
(6) Alarm/reset

If printout operation stops due to paper out or paper jam on the internal printer, the ALARM indicator lamp lights. Load a new paper stack or remove jammed paper, then press the RESET key to continue print operation. The RESET key may also be used to manually clear the alarm output when the TR2730-540 Relay Output option card is installed in the instrument.

## 3-8-4. Specifications Required for Measurement

(1) Single user $\log$ scan
a. Single interval log scan Specification of at least the following four items is required for this measurement mode:

Example:

- Measuring interval
- Channels to be measured
- Ranges for each group

b. Multi-interval log scan

The following specification items are required:
Example:

- Basic interval and mode


## Brelmoge, me

- Interval group boundary channels and multiples

o Channels to be measured
o Group boundary channels
Same as that for single interval.
- Ranges for each group
c. Variable interval log scan

The following specification items are required:
Example:
o Basic interval and mode
Ma:

- Interval modification time and multiples


Log interval 1 (basic Log interval 2 (basic interval $x$ multiple) interval $x$ multiple)

- Channels to be measured
- Group boundary channels

Same as that for single interval.
(2) Multi-user log scan

In this mode the channels are divided for individual users in the multi-interval mode, and log intervals are specified for each channel group in terms of multiples of the basic interval. The relationships between user numbers and group numbers for channel boundary are specified as shown in Table 3-1.

Table 3-1 User numbers vs. group numbers

| Basic interval |  | h | s |
| :---: | :---: | :---: | :---: |
| User 1 | M1 | ch | N |
|  | M2 | ch | N |
| User 2 | M3 | ch | N |
|  | M4 | ch | N |
| User 3 | M5 | ch | N |
|  | M6 | ch | N |
| User 4 | M7 | ch | N |
|  | M8 | ch | N |

Up to two multi-intervals can be specified for each user to perform log scan. If only one interval is used for each user, specify group number M1 for user 1, M3 for user 2, M5 for user 3, and M7 for user 4.

The required specification items are boundary channel numbers for each group and the multiples for the basic interval.

In the multi-user mode, the channels for each user should be divided in ascending order according to ascending user numbers. For example, two users cannot use both thermocouples and RTD's by using the TR2741E Sensor Terminal (containing 40 channels of thermocouple inputs and 20 channels of RTD inputs).
$\left.\begin{array}{lr}\text { User A T/C } & 1 \mathrm{CH} \text { to } 20 \mathrm{CH} \text { Pt } 41 \mathrm{CH} \text { to } 50 \mathrm{CH} \\ \text { User } \mathrm{B} \mathrm{T} / \mathrm{C} & 21 \mathrm{CH} \text { to } 40 \mathrm{CH} \text { Pt } 51 \mathrm{CH} \text { to } 60 \mathrm{CH}\end{array}\right\}$ Disabled

User $1\left\{\begin{array}{lr}\mathrm{M} 1 & 1 \mathrm{CH} \text { to } 20 \mathrm{CH} \\ \mathrm{M} 2 & 41 \mathrm{CH} \text { to } 50 \mathrm{CH}\end{array}\right.$ Programming disabled
User $2\left\{\begin{array}{ll}\text { M3 } & 21 \mathrm{CH} \text { to } 40 \mathrm{CH} \\ \mathrm{M} 4 & 51 \mathrm{CH} \text { to } 60 \mathrm{CH}\end{array}\right\}$
In the following case,

| User 1 | M 1 | 1 CH to 20 CH |  |
| :--- | :--- | :--- | :--- |
| User 2 | M3 | 21 CH to 40 CH |  |
| User | 3 | M5 | 41 CH to 50 CH |
| User | 4 | M 7 | 51 CH to 60 CH |

Or, the following configurations are enabled by using two TR2741E Sensor Terminals:
User $1\left\{\begin{array}{ll}\text { M1 } & 101 \mathrm{CH} \text { to } 121 \mathrm{CH} \\ \mathrm{M} 2 & 141 \mathrm{CH} \text { to } 150 \mathrm{CH}\end{array}\right\}$ Enabled
User $2\left\{\begin{array}{ll}\mathrm{M} 3 & 201 \mathrm{CH} \text { to } 221 \mathrm{CH} \\ \mathrm{M} 4 & 241 \mathrm{CH} \text { to } 250 \mathrm{CH}\end{array}\right\}$

All other required programming procedure is the same as that for single user $\log$ scan.
(3) Monitor scan
a. All channel monitoring

In this mode the scan channels specified in the log scan mode are scanned at the specified monitor interval. The required specification items are as follows:

Example:

- Monitor interval and mode

- Output channel, output
 offset specifications when analog output is required.
o Channels to be measured (Same as log scan channels)
- Group boundary channels
- Ranges for each group

Same as that for single
interval. (Unnecessary if
already programmed during
log scan programming.)
b. Selective channel monitoring

The following specification items are required: Example:

- Monitor interval and mode Demises $5=1$
- Selected channel numbers, analog output digits, and with/without offset specifications
- Channels to be measured
o Group boundary channels
o Ranges for each group


Same as that for single interval mode. (Unnecessary if already specified during log scan programming.)

3-8-5. Programming and Operation Examples

## (1) Single user log scan example

a. Single interval


In the above example, channels 1 through 20 on terminal 1 are scanned at 10 -minute intervals for temperature measurement using $T(C C)$ type thermocouples and the measured data is delivered to the internal printer. Label and/or
time setting may be done before $\log$ scan start.

## b. Multi-interval



Note: Interval boundary channels and measurement channels can be independently specified. Measurement boundary channels are also specifiable independently.

```
c. Variable interval
```



Note: The interval modification time should be specified in real clock time if the clock mode is specified.
(2) Analog output example

In the following example, the analog form of logged data is output while data logging is made at regular intervals and, at the same time, continuous display is specified for a specific channel:

(3) Upper/lower limit identification example

In the following example, monitor scan is performed while data logging is made at regular intervals and the results of upper/lower limit identification are output through relays. Logged data is delivered to an external printer via the Serial Data Output option card:

(4) Scaling, engineering unit and arithmetic operation programming example
In the following example, logged data at regular intervals is subject to scaling operation, engineering unit conversion, and subtract operation with reference to a specific channel, then the results of upper/lower identification are output through relays:


Specify scaling coefficients for each group.


Refer to item 3-6-3.


Refer to item 3-7-2 ${ }^{\text {2w }}$ and 3-7-3.


LOG

(5) Multi-user log scan example

The programming procedure for the multi-user log scan is almost
identical to that for the multi-interval mode for single user
log scan, except for measurement start/stop command procedure.
In the following example:

```
Specify the basic interval and scan mode.
```

Specify the interval group boundary channels and the interval with multiples of the basic interval.

Specify boundary channels for interval users.
Two channel group are allocated to each as follows:
$\left\{\begin{array}{lllll}\text { User } & 1 & ---- & \text { M1 and M2 } \\ \text { User } & 2 & -\ldots- & \text { M3 and M4 } \\ \text { User } & 3 & -\ldots- & \text { M5 and M6 } \\ \text { User } & 4 & -\infty & \text { M7 and M8 }\end{array}\right.$

User 1 scans up to channel 40 on terminal at 10 -minute intervals. User 2 scans up to channel 40 on terminal 2 at 10 -minute intervals. User 3 scans up to cahnnel 40 on terminal 3 at l5-minute intervals. User 4 scans up to channel 20 on terminal 4 at 10 -minute intervals and up to channel 40 the same terminal at 20-minute intervals at 20-minute interval.

## Determines whether measurement channels for each user is delivered to internal or external output unit.



SCAN CH.

[Measurement for user 1 started.]
[Measurement for user 2 started.]
[Measurement for user 1 stopped.]
[Measurement for user 2 stopped.]
(6) Upper/lower limit identification (under log scan during error in monitor scan mode) example

In the following example, upper/lower limit identification is performed in the monitor scan mode, and regular log scan is executed to output data only during error generation:


Refer to item 3-7-2 and 3-7-3.

(7) Automatic start/stop programming example

In the following example, regular-interval logging is performed by using the automatic start/stop function:



1. When the average or delay mode is specified by using the filter function, measurement time of (repetitions of measurement for averaging or delay $x 50 \mathrm{~ms})+$ (processing time: 200 ms ) is required for each channel.
2. When the scan step pulses are to be output via the TR2730-520 BCD Output/External Control option card, filter function is required to activate.

The single user $\log$ scan is the most fundamental measurement mode for a data logger. In this mode, operation of the LOG key (provided in the START/STOP section) starts measurement on all the specified input Channels at the interval specified with the LOG INTL key. The following four modes are selectable for the interval modes to determine log scan intervals to match input signals.

- Multi-interval mode
- Variable interval mode
o Single interval mode
- External interval mode
(1) Multi-interval mode

The multi-interval mode permits different log scan intervals for individual input channel groups. It requires specifications of group boundary channels and the multiples of the basic interval for each group. Up to eight channel groups can be defined and up to eight different scan intervals can be specified for each group. Measured data is output in sequential order at the intervals which are specified multiples of the basic interval. The multi-interval mode is also used when statistical operation on the time domain (primary arithmetic operation) is specified.
(2) Variable interval mode

In the variable interval mode, the measurement interval for all the specified input channels is changed with elapsed times. It requires specification of the times at which the measurement interval is to be changed and the intervals used up to each Changeover time with multiples of the basic interval. Up to six interval changeover times can be specified. If the timer mode is specified, interval changeover takes place referencing the elapsed times from measurement start. When the last changeover time is passed, the basic interval is selected.

Figure 3-13 shows the outline of the variable interval mode used for temperature test in a thermostatic chamber, etc. If an interval changeover time does not agree with the multiples of the basic interval, interval changeover takes place when the preceding interval exceeds its interval changeover time. (See Figure 3-14.)


Fig. 3-13 Temperature test data logging using
the variable interval mode


Fig. 3-14 Measurement interval changeover in the variable interval mode
(3) Single interval mode

The single interval mode is the most basic interval mode in which all the specified input channels are scanned at a specified interval. Similar to the two other modes just mentioned above, the single interval mode permits engineering unit conversion (scaling operation), 7 types or primary arithmetic operations, upper/lower limit identification, and secondary arithmetic operations.
(4) External interval mode

In the external interval mode, the measurement interval is determined by an external contact signal:

In the single log scan mode, all the specified input channels are scanned only once regardless of the interval modes described above and measured data can be delivered to the internal printer or external units. If $\log$ scan is activated during single scan, log scan start is held up until single-scan data output is completed. Conversely, a single scan activated during log scan is ignored. Arithmetic operations or upper/lower limit identification can not be executed for data obtained by single-scan operation, except for engineering unit conversion.


Fig. 3-15 Data logging using a single scan mode

The multi-user log scan permits up to four independent data logging sequences to be performed. Input channels and scan intervals can be specified independently for individual users. Input channels are divided into groups in ascending order and a group is allocated to each user. Therefore, one sensor terminal can be shared by multiple users, whereas each user cannot use both platinum RTD and thermocouple sensors at a time. In fact, it would be more practical that each sensor terminal be allocated to individual users. In the multi-user $\log$ scan mode, measurements for individual users can be started by simple key operation on the front panel of the instrument. It is also possible to start data logging for all users simultaneously if required. Once a start command is activated in the multi-user mode, the single user scan mode is not to be initiated until log scan for all users is stopped. The user for which measurement is currently carried out is indicated by the user status lamps on the front panel.

When synchronization with an external unit or local measurement control by individual users is required, the user-independent external start/stop contact command available with the TR2730-520 BCD Output/External Control option card may be used. Since, in the multi-user log scan mode, data logging for individual users is performed at random timings, scan sequences for more than one user may overlap with each other. To prevent this, scan start for one user may be held up for the maximum scan plus data-processing time for another user even if the scan start time for the former is reached. (See Figure 3-16.) As a result, there may generate a time lag between the specified scan start timing and the actual scan start timing.


Fig. 3-16 Contention between two users in the multi-user log scan mode

Since measurement is performed independently for individual users in the multi-user log scan mode, special consideration is required for data output. When data of multiple users is only output to the internal printer or an external unit, data of different users is output in the time sequence order in which actual data logging for individual users has been performed. This output format may be useful especially when the amount of logged data is not very large or for data monitoring, as a single scan data for each user is printed at one time together with the user number.

When user-independent batch data output is desired, the TR2730-570 Data Buffer Memory option card is necessary. Multiple scan data for individual users can print out by using this option card. When this option card is used, it should be noted that data is not output until the data memory for the pertinent user becomes full or data logging is stopped, and that the next scan for a user is held up during data output for that user.

A more useful data output format is available with the TR2730-560 Serial Data Output option card which enables attachment of external output units that correspond to individual users. If the number of attached output units is smaller than the number of users, the data of the overflow user is output to the last unit. The outline of data output processing in the multi-user $\log$ scan mode is shown in Figure 3-17; application to multiple businesses is illustrated in Figure 3-18; and a printout example is shown in Figure 3-19.


Fig. 3-17 Outline of data output processing in the multi-user log scan mode


Fig. 3-18 Data logging application example in the multi-user $\log$ mode


Fig. 3-19 Printout example

3-9-3. Monitor Scan and Call Channel

The monitor scan and call channel functions are useful for continuous monitoring of a specific input channel or operator service. Since these functions have a lower priority than log scan, they are executed during intervals between two log scan sequences. Similar to log scan, the monitor scan and call channel functions first performs calibration followed by input channel measurement, data processing and data output and/or display. (See Figure 3-20.) Neither of the two functions has priority between them. If monitor scan is specified continuous as shown in Figure 3-20, the monitor scan and call channel sequences are executed alternately. Unlike log scan, calibration measurement is performed at the beginning of each scan even if continuous measurement is specified.


Fig. 3-20 Alternate execution of monitor scan (continuous interval) and call channel sequences

The channel to be displayed by the call channel function may be outside the channel range specified for $\log$ scan, provided that the measurement range for the channel is specified in advance. If linear scaling operation is specified, data after being subjected to engineering unit conversion is displayed at approximately one second intervals.

The input channels to be measured by the monitor scan function are usually identical to those specified for $\log$ scan, and are scanned at the specified monitor intervals. However, to cope with the case where the number of input channels to be monitored is smaller than the number of $\log$ scan channels or only analog output is required, the SEL mode, in which up to 12 input channels can be arbitrarily specified for scanning, is available. For monitor scan data, subtract operation between two input channels is possible as well as engineering unit conversion.
As outlined in Figure 3-21, the output of monitor scan may be used in three ways different from the ways in which $\log$ scan output is used.


Fig. 3-21 Use of monitor scan data

If measured data after being subjected to engineering unit conversion exceeds the separately specified upper or lower limit values, an alarm signal (make) is output via the TR2730-540 Relay Output option card. Upper and lower limit values can be specified for each input channel group and relay numbers corresponding to each group are programmable.
The TR2730-540 Relay Output option card contains 20 relays per card which are arbitrarily selectable for over-limit alarm output. In addition to the 20 relays, the card also has one common relay which may be used to provide a make signal if an over limit da'ta is obtained on any of the input channels. The contact signal output modes include the three modes as shown in Figure 3-22, which are selectable on the front panel of the TR2730-540 for each card:


Fig. 3-22 Alarm contact signal output mode in monitor scan

In the pulse output mode, a pulse signal of approximately 150 ms in width is output only if data exceeds the specified limit value. The level output mode outputs a make signal if data exceeds the specified limit value and outputs a break signal when data returns within the limit value. The level output mode is useful when a short over-limit interval is not regarded as an error. In the manual reset mode, the alarm signal remains active until the RESET key on the front panel is pressed by the operator.
Other applications of the monitor scan function includes continuous trend monitoring using analog data output. Up to 12 arbitrary channels can be output in analog form by using two TR2730-550 Analog Output option cards. The analog data output obtained by the monitor scan is a step-like signal as shown in Figure 3-23. Therefore, it is necessary to specify the most adequate monitor interval depending on the type of the recorder to be used and chart feed speed.


Fig. 3-23 Analog data output using the TR2730-550 option card

If $\log$ scan is activated during monitor scan, the monitor scan holds the preceding data level until log scan is completed. If monitor scan is to be performed only to obtain analog data output, it is recommended that the number of input channels to be scanned should be reduced by specifying the selective channel mode, instead of scanning all input channels.

The correspondence between input channels and analog data output channels is arbitrarily programable, and in addition, that between measured data and analog full-scale value (digit specification) is also programable. For example, small variations of input data can be recorded on an analog recorder by assigning the least significant three digits of measured data to the analog full-scale. If input data varies around the analog full-scale level, continuous data response will be lost once the input exceeds the full-scale because the recorder's pen will then reference the zero graticule on the chart for the excess. To prevent this, a $50 \%$ digital offset can be specified. Since these analog recording conditions are independent specification for up to 12 input channels, greater freedom is achieved in analog recording. Also the difference from the room temperature or a reference point can be continuously recorded by the differential analog output capability. The alarm printout function is also one of the applications of the monitor scan mode. If data of an input channel exceeds the specified limit value during monitor scan, only the data of the pertinent channel is delivered to the internal printer together with the label and the time. When the data returns within the limit value, it is also printed out. This alarm printout function is very useful for error data recording and check, but is available only on the internal printer.


Fig. 3-24 Alarm printout example

3-9-4. Upper/Lower Limit Identification for Log Scan and Automatic Log Start by Monitor Scan

As mentioned in the preceding item, input monitoring by upper/lower limit identification is, in principle, executed by monitor scan. However, this practice may be inconvenient if upper/lower limit identification is required on the operation results obtained as a result of $\log$ scan. To cope with this case, the TR2731 enables specification of whether upper/lower limit identification is to be done during monitor scan or log scan. This can be specified during alarm group programming. As a result, it is possible to compare operation results with the specified limit value and output the comparison result in the form of contact signals or to print error data with the alarm printout function.


Fig. 3-25 Upper/lower limit identification for log scan data

Figure 3-25 shows the outline of input monitoring for $\log$ scan data. Limit identification is also enabled for data after it is subjected to primary arithmetic operations. For example, upper/lower limit identification can be performed on differential data obtained by subtracting the preceding data from the present data as shown in Figure 3-26. The result of this limit identification may be used as a differential alarm.


Fig. 3-26 Differential alarm detection for $\log$ scan data

If data exceeds the specified limit value during input channel scanning, it can activate an arbitrary contact on the TR2730-540 Relay Output option card, similar to the case with monitor scan. The alarm printout function for $\log$ scan data outputs data of all input channels to the internal printer, unlike the case with the monitor scan. In other words, if data of any input channel exceeds the specified limit value, data of all input channels is printed out only once. When the data of the pertinent channel returns within the limit value, no printout executes. The data exceeding the limit value is followed by $H$ (High) or $L$ (Low) on the printout. Similarly, letter $H$ or $L$ is also printed at the end of data lines depending on limit identification results during normal log-scan data printout. Since these upper/lower limit identification modes are selectable for each alarm group, one input channel may be identified by alarm scan while another input channel may be identified by log scan. All input channels specified for $\log$ scan are scanned for limit identification. The TR2731 also provides another alarm mode called monitor/log start mode. In this mode, log scan is automatically started only while data of any input channel specified for the monitor/log start mode exceeds the specified limit value. For example, it is possible to detect over-limit generation while making continuous monitoring on the object to be measured, start data logging from that point, and stop the data logging when the data of the pertinent channel returns within the limit value.

An automatic log start/stop sequence using monitor scan is shown in Figure 3-27. Since this sequence relies on the upper/lower limit identification mode for monitor scan, required programming contents are identical to those for monitor scan.


Fig. 3-27 Automatic log start/stop sequence using monitor scan

| 18-1i |  |  |
| :---: | :---: | :---: |
| CH | Cبדب\% |  |
| 11 | E. 40 |  |
| 12 | E, 4 |  |
| 13 | E. 42 | mi |
| 14 | G. 46 | me |
| $\underline{15}$ | G.4. | ¢ |
| 16 | E. 4.1 | m |
| 17 | E.446 | ¢ |
| 18 | 3.422 | 0 |
| 15 | E.4. | mb |
| 26 | 9.48 |  |
| 18-1:18516 |  |  |
| H | DTCH |  |
| 11 | G.425 | me |
| 12 | 9.42 | me |
| 13 | 9.429 | 0 |
|  | - 7.42 | mb |

Fig. 3-28 Alarm printout example

In addition to the data logging functions hitherto described, the TR2731 Data Logger provides various other support functions to meet a broad range of application requirements. These functions are also activated by simple operation of front panel keys for quick and easy Check and modification of programming contents.
(1) Scan Channel (SCAN CH.)

The Scan Channel function is used to specify input channels (range) for log scan. Only the specified input channels are scanned during log scan. In addition to the 40 channel groups enabling input range programming, etc., up to 10 additional groups are definable to specify the actual scan ranges. Since the channels not specified are automatically skipped, the input channels to be measured can be selected at random. In the ALL mode of monitor scan in which input channels are not selectively specified, this function is also effective to select the pertinent channels for scanning.
(2) Filter (FILTER)

The filter function is used for arithmetic averaging of measured data for a specified number of repetitions. It is especially useful when the input signal is contaminated by noise. When the filter function is activated, each channel is repeatedly scanned by the specified times to average the results. (See Figure 3-29.) The measurement time required for each channel is a specified multiples of 50 ms . There is a time gap of approximately 200 ms between measurement end for one channel and measurement start for the next, however, due to sensor terminal precedence control.


Fig. 3-29 Averaging by the filter function

In addition to the averaging mode, the filter function also provides the delay mode, with which measurement start can be delayed by 50 ms $x$ (specified number - 1) for input data settling, etc. (See Figure 3-30.) In this case also, a time gap occurs between scan end for one channel and scan start for the next.


Fig. 3-30 Delay mode sequence by the filter function

The filter function is effective for all input channels. It is not possible to make it selectively effective for particular channels or sensor terminals. It is also effective in the log scan, monitor scan, and call channel modes.
(3)

AUTO TIME
The Auto Time function will automatically start and/or stop log scan at specified start and/or stop times, which are specified in date, hour, and minute. The Auto Time function can be activated by operating the LOG key in the START/STOP section. In may, of course, be activated for only either of start and stop operations. If no date is specified, data logging can be started and stopped at specified times every day. (See Figure 3-31.) If the clock is selected in the timer mode, scan start and stop are controlled according to elapsed times from the measurement start.

The Auto Time function is not available for the multi-user log scan mode.


Fig. 3-31 Example of automatic $\log$ scan using the Auto Time function

LABEL
Up to eight characters can be specified as a label and output upon each log scan together with time data. A label may denote an experimental number, tester's name, date of data acquisition, etc. and may be conveniently used as a data index. Specifiable characters are uppercase and lowercase alphabetic letters and numeric characters. They are output in the form of GPIB serial data stream other than $B C D$ output. If the index number mode is specified, a label is followed by an index comprised of three digits of auto-incremental numeric characters. The index is incremented from 000 to 999 upon each $\log$ scan, so that data can be easily referenced by the index numbers. The index is, however, not available for the multi-user log scan mode; the same label is attached to data of all user in this mode.
(5) CLOCK

The TR2731 contains a crystal-controlled clock to permit control or recording of the date, hour, minute, and second of data acquisition. Time information can be shown in the display or modify with front panel keys at any time. (Only date, hour, and minute are specifiable.)

The clock works in the clock mode or timer mode. When the timer mode is selected, the elapsed times from log scan start is delivered to the display and/or printer. It is, therefore, usable for periodical data logging or elapsed time data acquisition synchronized with input signals. When the clock mode is selected, the clock indicates the present clock time except when $\log$ scan is busy, in which case the clock indicates the elapsed times from log start. If the timer mode is selected in the multi-user $\log$ scan mode, data logging can be controlled according to elapsed times for each user, while the elapsed time information is not displayed.

The TR2731's data output functions are outlined inf Figure 3-32. Data logged by log scan or single scan can be output to external units such as a printer, CRT display or personal computer, at each scan in the BCD parallel form, serial character string or parallel character formats if required, as well as to the internal thermal printer.


Fig. 3-32 Data output functions outline

While alarm printout data generated during monitor scan or log scan is delivered only to the internal printer, programming parameter lists can be output to an external unit via the serial output card. When more than one output unit is used simultaneously, data transfer is synchronized with the unit having the lowest speed.

The internal printer has a print speed of 2 lines per second and uses folded thermal paper. Figure 3-33 shows a printout example, wherein labels, measurement times, input channel numbers, data, units, and arithmetic types are printed in legible form. When continuous log scan is executed by using the TR2730-570 Data Buffer Memory option card, label, and time information are printed only at the beginning. While an input channel number printout contains one digit of terminal number and two digits of channel number, terminal number is not printed if the system uses only one terminal. In the multi-user log scan mode, a label printout is preceded by a user number, and paper feed automatically takes place after every printout of a single scan data.

Figure 3-34 shows an example of alarm printout obtained by monitor scan, wherein data of only the pertinent channel is printed when it exceeds the limit value and then returns to within the limit value. Figure 3-35 shows a parameter printout example, in which the current programming information is printed in three categories.

If paper out is detected for the internal printer, the alarm lamp on the front panel of the instrument lights. After loading a new paper stack, press the RESET key to clear the alarm state.


Fig. 3-33


Fig. 3-34

```
LOE IHTEFHM:
```


SHE EH.

HOUITDF IrdTEFHit

FILTEF
ET TIME $\quad=\quad!$
GF TIME
$\therefore$ :-
LHEE TEST.
ELFTME ELE
CHLL EH II
HLD CDTME!

GROUF PRJGFAMM LIET

A! 104

F 1200r 2gut
LITYT
1 110日G MinE Min
Hi Eis
$\because 1200$ MODE LOG
Hi G.
LOi G.42E

Fig. 3-35

When data logging encompasses a long time span or monitoring is the primary purpose, appropriate countermeasure against power failure is required. The TR2731 includes memory back-up for programming information and clock data and automatic restart upon power recovery. Programing information is kept intact for approximately one month by an internal battery. If the battery voltage drops below a certain level, message "LOW BAT." is shown in the display and delivered to the printer when the instrument is powered. And if power failure occurs when the POWER switch is set at LOCK position, the clock continues to work for up to 18 hours so that no reset in required within that period of time.
If power failure occurs during data logging and when the POWER switch is set at LOCK position, measurement is continued upon power recovery at the specified interval. (See Figure 3-36.) It should be noted, however, that a power failure will disturb continuity of computation since operation is restarted by assuming the data logged immediately after power recovery as the first data, if computation in the time domain was specified before the power failure.

If power failure occurs when the multi-interval, variable-interval or multi-user $\log$ scan mode is selected, measurement will restart upon recovering from power failure at the basic interval, instead of the programmed interval before the power failure occurred.


Fig. 3-36 Measurement restart sequence upon power recovery

3-10. COMPUTING FUNCTIONS
3-10-1. Computing Function Outline

The TR2731 Computing Data Logger provides three types of computing functions: i.e., linear scaling operation, primary arithmetic operation, and secondary arithmetic operation. These computing functions can be aribitrarily combined in tandem sequence. Seven types of primary arithmetic operation and nine types of secondary arithmetic operation are available.

Any of these arithmetic types is selectable for individual input channel groups. In addition to the above arithmetic types, upper/lower limit identification operation is also available, which is used for over-limit channel detection or alarm printout. Figure 3-37 shows the outline of computation processing for log scan data. Data linearized on the sensor terminal can be subjected to engineering unit conversion by scaling operation, primary arithmetic operation and/or secondary arithmetic operation. Processed data can be delivered to all output units at one time.

For example, it is possible to make time-domain operation on data which has been subjected to engineering unit conversion and then perform inter-channel computation using the secondary arithmetic operation. If upper/lower limit identification is specified for log scan, the identification is possible on the data after it is subjected to the primary arithmetic operation.


Fig. 3-37 Outline of computation on log scan data

Figure 3-38 shows an outline of computation processing for monitor scan data. In this case, the primary arithmetic operation is available only in inter-channel difference computation. The result of inter-channel difference computation can be output in the analog form or used for upper/lower limit identification.


Fig. 3-38 Outline of computation on monitor scan data

Figure 3-39 shows the outline of input data display using the call channel function and of computation for single log scan data. While single log scan data can be output to all output units, it cannot be subjected to operations other than linear scaling.

Results of computation are, in principle, rearranged into the same number of significant digits as that of the measured input data (industrial quantities), with all insignificant digits rounded off. The number of significant digits or decimal places of data which has been subjected to computation may differ, however, from those of input data depending on the denominator (value B) for scaling operation or when the input data is subjected to multiplication or division for the secondary arithmetic operation. The maximum number of processable digits is seven. If the result of computation exceeds seven digits, only the most significant seven digits are output. A seven-digit output is not available for the display (up to 6 digits) or for BCD parallel output (up to 5 digits), however. Also for upper/lower limit identification, the most significant five digits of data are used for identification.

Special attention is required for computation of flag input or when the TR2730-520 BCD Output/External Control option card is to be used in the bit mode.

Since flag input is internally handled as 00001 for make contact and 00000 for break contact, it can be used for computation and upper/lower limit identification. Bit-pattern parallel input is internally processed as an eight bit binary number.


Fig. 3-39 Computation outline for single scan data and call channel function

For computation programming, input channels are sequentially divided into groups and then computation functions are specified for each of the groups. (See Figure 3-40.) For example, measurement range, linear scaling, engineering unit (up to 4 characters), primary arithmetic operation type, and secondary arithmetic operation types are specified for a specific channel group. Up to 40 groups can be specified. Specified computation are performed on all channels that belong to the same group. Upper/lower limit identification can be performed on channel groups which are specified independently of the groups specified for computation.


Fig. 3-40 Group outline for computation programming

3-10-2. Linear Scaling Operation and Engineering Unit Conversion

For physical or chemical information acquisition, the input signal is generally converted into a normalized voltage or other instrumentation signal by sensors or transducers. The primary purpose of scaling operation is to express transduced signals in meaningful form having the engineering unit of the original input information. Scaling operation is executed by specifying constants A (offset) and $B$ (span) for measured value $X$ for equation ( $X-A$ )/B, where $B$ must not be equal to zero. For example, if it is desired to express an instrumentation signal of 4 to 20 mA measured across a shunt resistor (50 $\Omega$ ) in 0 to $100 \%$, first specify constants A and B, then specify the unit of percent (\%), as shown in Figure 3-41.

Scaling operation may also be used for arithmetic operations, cancellation of offset, enlargement of small signal variations or normalizing operation by selecting constants A and B appropriately. For example, sensitivity differences between sensors can be cancelled by first measuring the reference value (e.g. temperature) to determine the sensitivities of individual sensors and then selecting constants $A$ and $B$ according to the determined sensitivities. As shown in Figure 3-42, linearization characteristic can be corrected by scaling technique so far as the range to be corrected is small.


Scaling
computation :

$$
\begin{gathered}
\text { (A) } \\
\frac{\mathrm{Ex}-0.2000}{0.0080}=0.00 \\
\text { (B) }
\end{gathered}
$$

Fig. 3-41 Instrumentation input measurement using the linear scaling function


Fig. 3-42 Correction of small range of linearization characteristic using the scaling technique

For engineering unit specification, up to four uppercase or lowercase alphabetic letters and six types of symbols $(\Omega, \operatorname{slash}(/), \mu, \%, \mu$, and space) can be used for each group. Specified engineering units are output to the GPIB Interface and Serial Data Output option cards if installed, as well as to the internal printer and display. Lowercase letters or special symbols, however, cannot be delivered to optional cards.

If the engineering units for each input group are apparent and need not be specified, programming characters may be used as tag names for input channels.

3-10-3. Primary Arithmetic Operation

The primary arithmetic operation includes seven types of operation: inter-channel difference ( $\triangle \mathrm{N}$ ), difference from the preceding data $(\Delta t)$, difference from the initial data $(\Delta I)$, maximum ( $M X$ ), minimum (MN), average (AV), and total (TL). Any one of these operations can be specified for each input channel group. All operations other than the inter-channel difference operation refer to only one specific channel and performed in the time domain.
(1) Inter-channel difference computation ( $\Delta \mathrm{N}$ )

In the inter-channel difference computation, differences between all channels of a specified channel group and a reference channel are determined. The reference channel may belong to other channel group. In the multi-interval mode of multi-user log mode, however, difference from the previous data is determined. Care should be exercised if any operation is specified for the reference channel itself. When the reference channel is within the same channel group, the measured data itself is output. Inter-channel difference computation may be used to determine the differences from the room temperature or reference temperature, temperature difference between an inlet and exit, differential computation for thermal flow measurement or recognition of correlations.

For example, a sensitivity error of a temperature sensor can be determined by measuring the same temperature with the sensor to be tested and a calibrated sensor and computing the difference in the two sensor outputs. (See Figure 3-43.) It is possible to directly output error ratios by using the ratio calculation included in the secondary arithmetic operation.


Fig. 3-43 Determining sensitivity error of a temperature sensor using the inter-channel difference computation
(2) Difference from the initial data ( $\Delta I$ )

In this computation, difference between the first $\log$ scan data and the subsequent $\log$ scan data are determined. The initial output data is the measured data itself, and no upper/lower limit identification is performed on the data even if it is specified.

As shown in Figure 3-44, this computation may be effectively used for cancellation of offset, correction of input amplifier's imbalanced error, elimination of background, measurement of temperature difference after heating or cooling, and other similar cases where only variations from a reference start point are to be determined.


Fig. 3-44 Difference from initial data
(3) Difference from the preceding data ( $\Delta t$ )

In this computation, differences from the preceding data on the same channel are determined for all input channels of a specified group and time-differential data is output. If log scan interval is programmed appropriately, temperature variation per time unit, etc. can be determined. The $\Delta t$ operation may also be advantageous for recognition of differential response or temperature gradient, evaluation of heating or cooling rate, or control response evaluation for temperature controllers. The first $\log$ scan data is output as the initial data which is not subjected to any operation, and no upper/lower limit identification is performed on the initial data.


Fig. 3-45 Difference from the preceding data
(4) Maximum (MX), minimum (MN), average (AV), and total (TL) of data logged in a certain period of time The MX, MN, AV, and TL computations are performed on the data obtained as a result of the specified number of $\log$ scan repetitions and for input channels of the same channel group. As shown in Figure 3-46, a specific input channel is sampled by the specified number of times, and the operation result is output after the specified number of samplings is completed. No computation result is output during sampling and sampled data is not output. The first log scan data is exmpted from the computation. If the sampling interval is short, the next sampling may be started before output of the operation result for the preceding sampling is completed. (See Figure 3-46.) To prevent this, sampling is halted during data output and is then restarted after data output is completed.

While sampling is halted, the data during that period will be lost. This will be avoided by buffering the data using the TR2730-570 Data Buffer Memory option card. Data output timing can be synchronized with other input channel groups with the multi-interval mode.


Fig. 3-46 Outline of the MX, MN, AV, and TL computations

The MX, MN, AV, and TL computations may be effectively used for measurement of peak and average values, sunlight or fluid flow, recognition of control response of temperature controllers, etc., or detection of data deviation or center value. Only one operation can be performed on each channel group. If more than one type of operation (e.g. MX, MN, and AV) is desired for one channel group, the channel group must be treated as different groups for each computation type by connecting it in parallel to the sensor terminal.

Figure 3-47 shows an example of control response measurement for an electric foot warmer; Figure 3-48 shows an example of saturation point data logging for parts temperature cyclic test using the maximum value computation function.


Fig. 3-47 Control response measurement for temperature controller


Fig. 3-48 Saturation point measurement for cyclic temperature test

3-10-4. Secondary Arithmetic Operation

Addition of the TR2730-010 Memory/Aux. Function option card to the system makes nine types of secondary arithmetic operations available: i.e., inter-channel difference (SUB), inter-channel multiplication (MUL), inter-channel division (DIV), maximum (Max), minimum (Min), average (Ave), difference between maximum and minimum ( $p-p$ ), standard deviation (SD), and deviation (Dev). All these operations are performed between two or more channels which belong to the same channel group specified for the primary arithmetic operation. They are effectively used for computation of temperature distribution, average or deviation, and correlation with other channels. For the Max, Min, Ave, Ripple ( $p-p$ ), and SD operations, up to three types of operation can be specified for the same group. This makes it possible to obtain, say, the maximum, minimum, and average of log scan data at an arbitrary time.
The subtraction, multiplication and division operations are performed between a specified reference channel and other channels. The reference channel may be inside or outside a specific group to be operated.

The results of the secondary arithmetic operation are output in the group number order after the data subject to the primary arithmetic operation is output. If output of measured data is not necessary, it can be inhibited for each group. The secondary arithmetic operation is valid only to log scan data and upper/lower limit identification is not to be done on the operation results.
Since the secondary arithmetic operation is performed on data already subject to the primary arithmetic operation, it may be used for various applications in many combinations. Figure 3-49 shows an example of temperature dependence measurement achieved by combining the primary arithmetic operation's $\Delta t$ computation and secondary arithmetic operation's DIV computation. Figure 3-50 shows an example of temperature variation measurement for an electronic oven or thermostatic oven. Figure 3-51 shows a printout example for the secondary arithmetic operation results obtained by the internal printer.


Fig. 3-49 Temperature dependence measurement using the primary and secondary arithmetic operations


Fig. 3-50 Temperature variation measurement


Fig. 3-51 Secondary arithmetic operation results printout example

3-10-5. Upper/Lower Limit Identification and Alarm Comment Output.

The basic system configuration permits programming of upper and lower limit values with five digit numeric data with a decimal point, for up to 40 channel groups. When the limit alarm is detected for log scan data, upper/lower limit identification can be made on data subjected to the primary arithmetic operation. Contact status identification is also possible. Upper/lower limit identification is also performed on the sensor fault or over-scale data for thermocouples if limit values are specified.

Relays numbers on the TR2730-540 Relay Output option card are programmable for each of the upper and lower limit values for the same channel group. If more than one Relay Output option card is used, relay numbers from 1 through 80 can be specified consecutively. It limit identification is desired for inconsecutive input channels, available number of groups will be reduced since one group is required for channel skipping.

If an error is detected as a result of limit identification, details of the error can be delivered to print out in the form of a comment. Comments can be defined by up to 12 characters of alphanumeric letters and lowercase letters and can be registered in the memory which is backed up by a battery. Up to four comments can be registered in the memory, and comment numbers can be specified for each of the upper and lower limit values for one group. If a limit error occurs on the channel (group) for which comment is specified, the comment is delivered to the internal printer and the Serial Data Output option card if any. As shown in Figure 3-52, the comment is printed just above the data of the channel (group) on which the error has occurred.

Since lowercase letters and symbols are not available for serial data output, they are printed as follows:
, for $0, R$ for $\Omega, U$ for $\mu, D$ for $\Delta$, and $Q$ for .
An alarm comment is output when the alarm print mode is specified, or for $\log$ scan data for which upper/lower limit identification is specified.


Fig. 3-52 Alarm comment printout example

3-10-6. Contact Input and Digital Input Processing
(1) Contact input

When contact data is read from the TR2741 Sensor Terminal, the corresponding data output on the printer appears as ON or OFF, whereas they are internally treated as 1 for $O N$ and 0 for OFF. For example, if $A=0$ and $B=0.1$ is assumed for the scaling equation $(X-A) / B$, the results are 10 and 0 , but they appear as On and OFF, respectively, on the printout.

It should be noted, however, that if $A=0.5$ and $B=0.1$ is assumed for the same equation, the results are 5 and -5 , which both appear as ON on the printout.

The output to the TR2730-510 GPIB Interface and TR2730-520 BCD Output/External Control option cards is five digit numbers of 00000 for OFF and 00001 for ON.
(2) Digital input

When six digit data is input from an external unit via the TR2730-530 Digital Input option card, each data (up to 4 input data) is allocated to channels 501 through 504 and can be processed in must the same way as input data from the TR2741 Sensor Terminals. If input data is 8-bits, it is internally processed as binary data, but is output again in 8-bit form.

```
(e.g.) 11111111 = 255
```

$10110001=177$
$00000110=6$
For data output to the TR2730-520 BCD Output/External Control option card, the most significant five digits out of six input digits are output to the card, while the least significant five bits out of eight input bits are delivered to the card.

3-11. MAINTENANCE AND CHECK

This paragraph describes the basic operation check procedure, maintenance precautions, and error codes for the TR2731/2741 Computing Data Logger. After the instrument is serviced, be sure to perform the basic operation check before use.

3-11-1. Precautions for Maintenance and Repair

Before opening the outer cover of the instrument to check or repair, internal parts, be sure to set the POWER switch to OFF and unplug the power cable from AC receptacle. Utmost care should be exercised since power will remain in the circuit for a few minutes after the instrument is powered off due to the internal capacitance. When transporting the instrument, protect it from excessive mechanical shock as it contains mechanically sensitive components such as fluorescent display tubes and a printer.

3-11-2. Self-Diagnosis Function

When the instrument is powered on, a self-diagnosis program is automatically executed. A flowchart for the self-diagnosis sequence is shown in Figure 3-9.
If everything is normal, all dots in the display will turn on a few seconds later. If any error is detected during the diagnosis sequence, the corresponding error message will be shown in the display. Take necessary action according to the following information.

This message indicates that the internal battery voltage has dropped below the specified limit. This message may be shown if the instrument is used for the first time or it is left unused for more than one month.
 turn off the POWER switch and then turn it on again. While all dots in the display are lit, press the $\square^{\text {Clear }}$ and $\square^{\text {SET/NEXT }}$ keys to erase and initialize the entire programming parameters. After programming new parameters, leave the instrument powered on for more than eight hours to charge the internal battery. If the instrument is powered off before the battery is fully charged, part or all of the programming parameters may be erased.
 instrument is used every day or it is left powered on for more than eight hours, it is most probable that the internal battery is deteriorated and requires replacement. In this case notify your nearest ADVANTEST representative.
":.........:
This message indicates that an error is detected during an internal memory read/write test or that the control and arithmetic program memory is malfunctioning. If this message is displayed, notify your nearest ADVANTEST representative. When the self-diagnosis sequence is completed, all dots in the display are turned on.
 displayed or if you desire to erase all programming parameters for initialization, press the $\square$ and $\square$ get/mext $\quad$ keys while all display dots are turned on (approximately 5 seconds).

If the instrument is restored to its initial state with all programming parameters erased, the configuration of the TR2741 Sensor Terminals attached to the TR2731 and that of the optional cards installed in the TR2731 are checked and printed out on the internal printer.

If a printout test for the internal printer or panel key test is desired, press the 0 and $\square$ ket/nExT $\quad$ keys while all display dots are turned on just after the initial self-diagnosis sequence is completed. The display will show the
 If the numbers indicated on each key in Figure 3-53 are shown in the display, the corresponding key contacts are normal.
Then, consecutive pressing of the $\begin{array}{r}\text { PROGRAM } \\ \square S T\end{array}$ key three times will
 deliver a test pattern as shown in Figure 3-54 to the internal printer. If any error is observed while pressing the above key or during the printer test, notify your nearest ADVANTEST representative, as key or printer is supposed to be malfunctioning.


Fig. 3-53 Key check codes

```
\div\div\div\div\div\div\div\div\div\div\div%%%%%%%%
धधिध氏धधिध氏ध氏धि
yyyyyyyyyyyyyy
++++++++++++++++++++++
```



```
----------------------
```



## Fig．3－54 Printer test pattern

After the printer test is completed，press the
times consecutively．This will execute the sensor terminal and
optional card configuration check the then place the instrument
in the operation ready state．The key and printer test sequence
can be repeated any number of times until the
pressed three times consecutively．

If the instrument is found to be normal after the diagnosis and test sequences described in the preceding item, then perform communication test between the TR2731 mainframe and TR2741 Sensor Terminal (s) in the following procedures:
(1) Short input channel 1 on TR2741's

Initial value
(or currently programmed value) terminal 1.
(2) Specify the $\log$ interval to 10 seconds and the log interval mode to Single with:

(3) Specify channel 1 of terminal 1 for
the scan channel with:


(4) Specify channel 20 of terminal 1
for the group boundary channel with:
group PROGRAM

Channel

 no terminal number will be displayed. Currently programmed value F (or blank)


(5) Specify the measurement range to

(6) Output log data to the internal
printer with:

(7) Command log scan start with:


A printout example is shown in Figure 3-55.


Fig. 3-55 Operation check printout example (1)
(8) Stop $\log$ scan with:

(9) Specify channel 101 for the call
channel with:


Make sure that the printout and
displayed data is within 0.000 mV
$\pm 5$ counts.
(10) Next, check operations in a
different measurement range.
Select the range $T(C C)$ and activate
internal compensation and
linearization with:

group
PRROGRMM

range



(11) Start the log scan with:


A printout example is shown in Figure 3-56.

| 18-11 |  |
| :---: | :---: |
| $0 \cdot$ | [象Te |
| $\underline{1}$ | 24.7 |
|  | 18-1055:20 |
| $6$ | פTTO $24.7$ |
|  | - - inssise |
| $6$ |  |

Fig. 3-56 Operation check printout example (2)
(12) Stop the log scan with:


3-11-4. Problem Determination

If measurement or computation programming for the instrument are not correctly specified, or signal or ground wire connections to the TR2741 Sensor Terminals are not adequate, the correct measurement result may not be obtained. In such a case, determine the problem by referring to the operation manual and the troubleshooting procedure given in Table 3-2. If the problem persists, the instrument may be malfunctioning. Power off the instrument and unplug the power cable from its outlet, then notify your nearest Takeda Riken representative. The addresses and phone numbers are given at the end of this manual.
Table 3-2 Troubleshooting before calling for service

| Symptam problem | Contents to be checked | Corrective action | Page for Reference |
| :---: | :---: | :---: | :---: |
| Power remains off though TR2731's POWER switch is set to ON. | Improper connection of power cable. <br> Blown fuse. <br> Be sure to check the fuse with an ohm meter. <br> Line voltage in out of the specified range. | - Plug the cable firmly into its outlet. <br> - Replace the blown fuse with the supplied spare fuse. <br> If the fuse again blows when the instrument is powered on, notify your nearest ADVANTEST representative. <br> o Operate within the correct line voltage. | $1-6$ $1-7$ $1-6$ |
| POWER indicator <br> lamp on the TR2741 <br> Sensor Terminal <br> remains off. | Improper cable connection to the TR2731 Mainframe. <br> POWER switch on the rear panel of the TR2741 is OFF. <br> Blown fuse. | o Correct the cable connection. <br> o Set the POWER switch to ON. <br> o Replace the blown fuse with the supplied spare fuse. If the replaced fuse again blows when the instrument is powered on, notify your nearest ADVANTEST representative. | $\begin{aligned} & 2-22 \\ & 2-10 \\ & 1-7 \end{aligned}$ |

Table 3-2 Troubleshooting before calling for service (Cont'd)

| Symptam problem | Contents to be checked | Corrective action | Page for Reference |
| :---: | :---: | :---: | :---: |
|  | Improper cable connection. <br> Switch on the optional card is ON. <br> Improper installation of the optional card. | o Correct the cable connection. <br> o Try to interchange the connections of the two connectors on the rear panel. <br> o Set the switch on the optional card to ON. <br> o After installing the card into its slot, secure it firmly with retention screws. | $\begin{array}{r} 2-22 \\ 2-10 \\ 5-7 \\ 6-6 \\ 11-4 \\ 12-23 \end{array}$ |
| Measurement fails to start though the LOG key in the START/STOP section is pressed (lamp in the LOG key remains off.). | No channels (SCAN CH.) to be measured are specified. <br> The programmed stop time has already been passed when the clock mode is specified. | o Specify the desired scan channels in advance. <br> o Eliminate the programmed stop time or program it again. | $\begin{aligned} & 3-40 \\ & 3-53 \end{aligned}$ |

Table 3-2 Troubleshooting before calling for service (Cont'd)

| Symptom problem | Contents to be checked | Corrective action | Page for Reference |
| :---: | :---: | :---: | :---: |
| No output delivered though the $\square$ key is activated. | Paper has jammed in the internal printer. | - Remove the jammed paper. | 3-149 |
| Only label and time data is printed out. | The AUX FUNCTION on the TR2730010 option card is specified for source data output inhibit (off). | o Change the programming into source data output enable (on). | 3-70 |
| Measured data is not normal. | Improper connection of input signal lines to the TR2741 Sensor Terminal. For thermocouple inputs, the selected range does not correspond to the type of thermocouple. Improper scaling coefficient specified. | o Correct the connection. <br> o Select the proper range. <br> o Either specify the proper coefficient value or eliminate the scaling programming. | $\begin{aligned} & 2-26 \\ & 2-34 \\ & 3-60 \\ & 3-65 \end{aligned}$ |

Table 3-2 Troubleshooting before calling for service (Cont'd)

| Symptam problem | Contents to be checked | Corrective action | Page for Reference |
| :---: | :---: | :---: | :---: |
| LOG MISSED lamp comes on during log scan. | Log interval is specified for continuous. Interval programming is shorter than the scanning time plus output time. | O No action needed if $\log$ interval is continuous ( $0 \mathrm{~h}: ~ 0 \mathrm{~m}: ~ 0 \mathrm{~s}$ ). <br> o Specify an interval longer than the scan time plus output time. (If the lamp comes on, it is not an instrument malfunction.) | $\begin{aligned} & 3-22 \\ & 3-29 \\ & 3-21 \\ & 3-85 \end{aligned}$ |
| Computation result is not normal. | Improper scaling coefficient specified. <br> Inter-channel computation is not programmed for proper scan timing (for multi-interval mode, etc.). | o Correct the specification. <br> o Specify the interval so that scanning executes simultaneously. | $\begin{aligned} & 3-65 \\ & 3-131 \end{aligned}$ |
| Results of upper/ lower limit identification ( $\mathrm{H} / \mathrm{L}$ ) are not printed out. | Improper limit value specification. <br> Log scan mode is not specified for limit identification. | o Correct the limit specification. <br> o Specify the $\log$ mode when programming alarm group channels. | $\begin{aligned} & 3-77 \\ & 3-78 \\ & 3-72 \\ & 7-8 \end{aligned}$ |

Table 3-2 Troubleshooting before calling for service (Cont'd)

| Symptam problem | Contents to be checked | Corrective action | Page for Reference |
| :---: | :---: | :---: | :---: |
| No contact output obtained though contact output is specified for limit identification for monitor scan data. | Improper limit value specification ( no computation other than N is performed). <br> Improper contact output channel number specification. <br> Improper selection of the output mode switch on the TR2730-540 card. | - The $I$ or $t$ computation are not available for monitor scan data. <br> o Correct contact output channel numbers. <br> o Select the correct output mode. | $\begin{aligned} & 3-97 \\ & 3-99 \\ & 7-12 \\ & 7-5 \end{aligned}$ |
| No data transferred to an attached external unit. | $\square$ <br> key remains inactive. <br> When the TR2730-520 is used, its panel switch is OFF. <br> When the TR2730-520 is used, transfer rate selection is not correct. <br> Transfer system (RS-232C for standard) is different. <br> Power to the external unit is off. | o Activate the key. <br> o Set the switch to ON. <br> o Output timing will differ depending on transfer rate and format. Check them again. <br> - Turn on the power. | $\begin{aligned} & 3-10 \\ & 5-12 \\ & 9-10 \\ & 5-7 \\ & 9-6 \end{aligned}$ |

Table 3-2 Troubleshooting before calling for service (Cont'd)

| Symptam problem | Contents to be checked | Corrective action | Page for Reference |
| :---: | :---: | :---: | :---: |
| Measured data is not stable and greatly varies as time elapses. | Input terminal is touched. <br> Terminal board is exposed to airflow or heat radiation. <br> A sudden change has occurred in the ambient temperature. Warm-up time is not sufficient. <br> Improper input signal connection. | - Allow several minutes before starting measurement (until temperature balance on the terminal board is restored.). <br> o Cover the terminal board to protect it from direct exposure to airflow of heat radiation. <br> o Wait until the temperature stabilizes. <br> o Allow more than 30 minutes for wa rm-up. <br> o Check input signal connection against the operation manual. |  |

Table 3-2 Troubleshooting before calling for service (Cont'd)

| Symptom problem | Contents to be checked | Corrective action | Page for Reference |
| :---: | :---: | :---: | :---: |
| Measurement data deviates. | Grounded type sensors are used. <br> Improper line frequency selection. | o Check with the item relating input connection procedure and take necessary action (if CMV is large.). <br> o Select the correct local line frequency with the line frequency selector switch on the TR2741 rear panel. (The line frequency for the TR2741 may differ from that for the TR2731 Mainframe. To prevent line induction noise, select the TR2741's local line frequency.) |  |
| Results of contact range measurement is always ON. | SENSOR OUT check switch on the TR2741 rear panel is OFF. | - Set the SENSOR OUT switch to ON. |  |
| The printer is not operated. | When the paper was replaced, the paper was drawn so hard between the paper holder and the paper slot? | o Without the slack of the paper, feeding is not smooth. Pull out the paper from the paper holder and loosen the paper. |  |

## 3-11-5. Recording Paper Replacement Procedure

Upon receiving the instrument, load the supplied recording paper in the instrument's internal printer as shown in Figure 3-57. If the printer is operated with no recording paper, the printer may be damaged. Red marks are provided on both sides of the recording paper at one meter from the end of the paper. Replace the paper by using these red marks as a guideline.


Fig. 3-57 Recording paper replacement procedure

Recording paper replacement procedure
(1) Pull the printer section forward.
(2) Remove the remaining papers by turning the FEED knob in the arrow direction.
(3) Load the replacement paper in the paper holder with the correct side facing upward. The correct side is indicated by an arrow.
(4) Thread the paper through the paper-out detecting device's pins and then insert it into the paper slot while turning the FEED knob in the allow direction.
(5) Be sure to slack the paper between the paper holder and the paper slot. (See Figure 3-57)

## CAUTIONS

1. If paper becomes jammed or is broken during printing, remove the paper while pressing the FREE lever in the arrow direction. Do not touch the FREE lever during printing.
2. Recording paper handling precautions:
(1) Do not keep in a hot, wet place for a long period of time.
(2) Do not expose to direct sunlight for a long period of time.
(3) Keep away from organic solutions (thinners, alcohol, etc.)
(4) Do not use a solvent bond for sticking.
3. If a PAPER OFF or PAPER JAM message is shown in the display during printing, press the RESET key on the front panel after reloading or correcting the paper.

The TR2731 uses an inhaling type cooling fan, which exhausts air through the top and bottom ventilator. To assure optimum cooling efficiency, the fan filter requires cleaning once every one or two months.


Fig. 3-58 The fan filter cleaning

Dust gathered on the filter can be removed by tapping the filter several times. If dust still remains, wash the filter in water. If the filter is washed, dry it completely before remounting it on the fan.
(1) If the front panel functions of the instrument are programmed wrongly or a wrong operation is made, the following error codes will be displayed according to each type of error:


Error message for programming for the measurement start

Table 3-3 Error code table I (programming errors)

| Display | Information |
| :---: | :---: |
| (1) | Key entry error <br> Entry of an undefined code is attempted. <br> (e.g.) The $\square$ <br> ~LP key is pressed while specifying the log internal. |
| (1) | A group number exceeding the maximum available group number is attempted to be programmed. |
|  | Format error <br> Error in programming format or procedure. <br> SET/NEXT <br> (e.g. ) <br> 1 $\square$ 2 <br> , <br> The $\square$ key must be used for delimiting between hour, minute and second specification, instead of the key. |

Table 3-3 Error code table I (programming errors) (Cont'd)

| Display | Information |
| :---: | :---: |
|  | Over specification error Programming is attempted exceeding the permitted range. <br> SET/MEXT <br> (e.g.) $\qquad$ 2 <br> 5 $\square$ <br> $\cdot$ $\square$ <br> 0 0 $\square$ <br> This programming exceeds 24 hours 00 minute 00 second. <br> (e.g.) The permissible number of repetitions of sampling in the computation mode is 127. <br> 3 <br> 0 <br> 0 |
|  | Double programming error <br> When programming a scan, group or alarm boundary channel, a channel already specified for another group is attempted to specify for a boundary channel. |
|  | Addition or insertion error <br> When programming a scan, group or alarm channels, an attempt is made to add or insert a group though all groups are already specified. |
| $\cdots$ | Channel error <br> An attempt is made to specify channels beyond the current channel configuration. <br> (e.g.) When only one sensor terminal is attached, the following programming is used to specify the scan channel: <br> SET/NEXT <br> 2 <br> 0 <br> (e.g.) The following programming is used when the terminal's channel configuration is 40 channels: <br> SET/NEXT <br> 5 <br> 0 $\square$ |
|  | Option error <br> Programming for an optional function is attempted even though no option card is installed. <br> (e.g.) Specification of a relay number is attempted during upper/lower limit programming though the TR2730-540 Relay Output option card is not installed. |
|  | Insertion error <br> When selecting a parameter other than scan, group or alarm (BACK) channel, the <br> 0 <br> and $\square$ keys are operated to obtain the insertion mode. |

Table 3-3 Error code table I (programming errors) (Cont'd)

(2) The following error messages are displayed for each type of error when the log or monitor scan is started or when the call channel is specified:

Table 3-4 Error code table II (error upon measurement start)

| Display | Information |
| :---: | :---: |
|  | Measurement error 1 <br> Multi-user $\log$ scan start is specified though the multi-interval mode is not specified. <br> Simultaneous start/stop is specified for all users while measurement is carried out on one of the users. <br> (e.g.) The following entry is made during scanning for user 1: |
|  | Measurement error 2 <br> The LOG key in the START/STOP section is pressed without specifying boundary channels or times for multi-interval or variable interval mode. |
| (10.0. | Measurement error 3 <br> Measurement restart is attempted while the preceding data is currently being output. |
|  | Measurement error 4 <br> Measurement restart is attempted while the contents of the TR2730-570 Data Buffer Memory option card are being printed when its buffer is full or when $\log$ scan is stopped. |
|  | Measurement error 5 <br> The LOG, SINGLE, or MONITOR key in the START/STOP section is pressed when no scan channels are specified. No channel range to be scanned is specified. <br> No call channel is specified when the CALL CH. key is pressed. |
| $\cdots$ | ```Measurement error } Inadequate programming exists when the Automatic Start/Stop function is operating.``` |

(Error code E26 is not defined.)
(3) If an error is generated during measurement or test, the following error messages are displayed according to the situation:

Table 3-5 Error code table II (error generated during measurement)

| Display or printout | Information |
| :---: | :---: |
| ¿an...... | Internal battery requires recharging. |
| (1) | An error is detected during the initial memory test. XXXX indicates the error address and $Y Y$ indicates the error data. |
| $\bigcirc \bigcirc \bigcirc \bigcirc$ | Indicates burnout or malfunction of a thermocouple sensor. |
| $\bigcirc \bigcirc \bigcirc \bigcirc$ | Indicates input overload. |
|  | Indicates that the input data is beyond the capability of linearization. |
|  | Indicates that the room temperature is beyond the compensatable range. |
| $\bigcirc \bigcirc \bigcirc \vdots: \ldots \vdots$ <br>  | Measurement is attempted in an uncalibrated range. |
|  | No data is transferred from the TR2741 (TR2741 is left turned off or the interconnecting cable is disconnected.). |
|  | An operation error is generated within the TR2731 (for example, division by zero). |
|  | The recording paper has run out. (See the item relating to the recording paper replacement procedure.). |
|  | The printer motor is inoperative due to paper jamming, etc. (See the item relating to the recording paper replacement procedure.). |
|  | For 3-wire RTD measurement, the resistance per wire exceeds 10 ohms. |

TR2730-010 MEMORY/AUX. FUNCTION OPTION CARD

4-1. GENERAL

The TR2730-010 Memory/Aux. Function option card provides additional memory capacity required when more than two TR2741 Sensor Terminals are to be attached to the TR2731 Computing Data Logger Mainframe, or additional computation programs.

This option card permits various statistical operations (maximum, minimum, average, difference between maximum and minimum, standard deviation, and deviation) including inter-channel subtraction, multiplication and division operations for data of a specified group logged at the same time. In addition, it permits the above-mentioned secondary arithmetic operations on data after being subjected to scaling and/or primary arithmetic operations, thereby meeting a broad application requirements.

## 4-2. SPECIFICATIONS

Input channels: Max. 320 channels (with four TR2741B's)
Secondary arithmetic operation types: Up to 9 types of operations and printout control can be selected for each of up to 40 function groups:
(1) Inter-channel subtraction (SUB) $X n-Y$
(2) Inter-channel multiplication (MUL) $X n \cdot Y$
(3) Inter-channel division (DIV) $X n / Y$
(4) Maximum of a group (Max) $\mathrm{X}_{\text {MAX }}$.
(5) Minimum of a group (Min) $X_{\text {MIN. }}$.
(6) Average of a group (Ave) $\mathrm{X}_{\text {AVE }}$.
(7) Difference between Max and Min ( $p-p$ ) $X_{\text {MAX. }}{ }^{-X_{M I N}}$.
(8) Standard deviation in a group (SD) $\sqrt{\frac{1}{N} \sum(X n-\bar{x})^{2}}$
(9) Deviation of each channel (Dev) $X n-\bar{X}$

Xn: Data of the pertinent channel Y : Data of the specified channel
(10) Inhibition of raw data output

Number of digits and position of decimal point for operation result: For addition and subtraction, operation results have the same number of digits as the input data having a smaller number of decimal places. For
multiplication, the number of decimal places of a multiplicand is identical to that of the decimal places of the result. However, if the result exceeds seven digits, the most significant 7 digits are output.
For division, the number of digits of the results depends on the divider as follows:
$1 \leq$ divider < 10 -- Same as the number of decimal places of the dividend.
$10 \leq$ divider --n---- The number of decimal places is increased by the number of integral digits of the divider minus 1.
1 > divider ------ The number of decimal places is decreased by the number of zeros in decimal places of the divider plus 1.

For standard deviation, up to four decimal places are output. However, if the result exceeds seven digits, the most significant 7 digits are output.

Alarm comment : Up to four types of alarm comments defined by up to 12 characters string can be specified for each limit identification group. These alarm comments are printed out during measurement error.

4-3. INSTTALLATION PROCEDURE

The TR2730-010 option card is inserted into the card slot on the rear panel of the TR2731 Mainframe and secured with two retention screws.
The installation procedure is illustrated in Figure 4-1.
(1) Remove the blank panel indicated below from the rear panel of the TR2731 Mainframe.

(2) Place the bottom of the option card on the board guide and insert the card fully into the slot. After plugging the card-edge connector into the slot connector, secure the card with the two retention screws.


This photo indicates another option card.

Fig. 4-1 Option card installation procedure

4-4. OPERATING PROCEDURE

For the detailed operating procedures for the TR2730-010 option card, refer to paragraph 3-6 "Basic Programming Procedure (FUNCTION)", item 3-6-6 "Secondary Arithmetic Operation (AUX. FUNCTION)", paragraph 3-7 "Basic Programming (ALARM)" and item 3-7-4 "Alarm Comment."

## SECTION 5

TR2730-520 BCD OUTPUT/EXTERNAL CONTROL OPTION CARD

## 5-1. GENERAL

The TR2730-520 BCD Output/External Control option card provides BCD parallel output of 3-digit channel numbers and 5-digit data. High speed data transfer to external units is permitted by the parallel output capability. In addition to channel numbers and data, the card also outputs function codes indicating data types and polarity, decimal point position code, and unit codes. This option card also accepts external control signals such as a measurement start signal for individual users in the multi-user log scan mode, that for single user log scan mode and a measurement interval programming signal. In addition, the card can activate scanning valves by utilizing the scan step signal output.

5-2. SPECIFICATIONS

Output signals : o Terminal number (1 digit), channel number (2 digits), data (5 digits), and clock time (8 digits), plus user number (1 digit) for multi-user log scan mode; 8 digits, 4-wire BCD code o Function code (1 digit); 4-wire BCD code o Unit code (1 digit); 4-wire BCD code - Decimal point position code; 3-wire BCD code, Decimal point polarity; single wire

Connector : Amphenor 50-pin connector (57-40500) Mating connector (57-30500)

Output level : TTL compatible, positive logic
Output strobe : TTL compatible, positive pulse (approx. 500 us in pulse width)

Data request input: TTL compatible, positive pulse (more than $100 \mu \mathrm{~s}$ in pulse width)

Time-out interval : 10 sec .
Pin assignment : See Figure 5-1.
Output code table : See Tables 5-1, 5-2, and 5-3.

External control inputs: Non-voltage make contact signal with chattering of less than 30 ms and pulse width of more than 100 ms
o Start/stop pulse (for single user mode)

- Multi-user start/stop (4-wire)
o External interval command
External control outputs: Make contact signal with a common return, $0.2 \mathrm{~A} / 50 \mathrm{Vdc}$
- Scan start pulse with pulse width of approx. 100 ms
o Scan end pulse with pulse width of approx. 100 ms
- Scan step pulse with pulse width of approx. 20 ms
- Log status (makes during log busy)

Connector : Amphenor 14-pin connector (57-40140)
Mating connector (57-30140)
Pin assignment : See Figure 5-2.


Fig. 5-1 Output connector pin assignment


CAUTION
The +5 V supply applied to pin 8 of this connector is for maintenance purpose only. When wiring external signals to this connector, ensure not to short this pin with other pins.

Fig. 5-2 External control signal connector pin assignment


Fig. 5-3 Directions of external control signals

Table 5-1 Function code table (pin numbers $34,35,38,39$ )

| HEX | BCD code | Meaning | Remarks (data output) |
| :---: | :---: | :---: | :---: |
|  | $3938 \quad 3534$ |  |  |
| 0 | 0000 | Data fullscale over | Data information indefinite |
| 1 | $\begin{array}{llll}0 & 0 & 0 & 1\end{array}$ | Data polarity positive (+) | For data exceeding 5 digits, the most significant 5 digits are output. <br> For flag input, 00001 when it makes, and 00000 when it breaks. |
| 3 | $\begin{array}{llll}0 & 0 & 1\end{array}$ | Data polarity negative (-) |  |
| 8 | 1000 | Thermocouple sensor fault | Data information indefinite |
| 9 | 100001 | Data transfer error occurring during transfer to a sensor terminal | Data information indefinite |
| A | 1010 | Signifies check time data. | Eight-digit output of day, hour, minute and second |
| B | 1011 | Signifies a user number. | Digit 0 of data output is 1 to 4 , and all other digits are 0. |
| E | 1110 | Data end code | All data output digits are hex F . |

Table 5-2 Unit code table (pin numbers 40 to 43)

| HEX | BCD code |  |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 43 | 42 | 41 | 40 |  |
| 0 | 0 | 0 | 0 | 0 | mV |
| 2 | 0 | 0 | 1 | 0 | V |
| 3 | 0 | 0 | 1 | 1 | ${ }^{\circ} \mathrm{C}$ |
| F | 1 | 1 | 1 | 1 | Other units |

Table 5-3 Decimal point position code table (pin numbers 44 through 46,37 )

| BCD code |  |  |  | Decimal point position |
| :--- | :--- | :--- | :--- | :--- |
| 37 | 46 | 45 | 44 |  |
| 0 | 0 | 0 | 0 | $10^{0}$ |
| 0 | 0 | 0 | 1 | $10^{1}$ |
| 0 | 0 | 1 | 0 | $10^{2}$ |
| 0 | 0 | 1 | 1 | $10^{3}$ |
| 0 | 1 | 0 | 0 | $10^{4}$ |
| 0 | 1 | 0 | 1 | $10^{5}$ |

$$
\begin{array}{llll} 
& \operatorname{Pin} 37=0 \\
10^{7} \mathrm{max} \cdot & 10^{5} 10^{4} 10^{3} 10^{2} 10^{1} 10^{0} 10^{-1} 10^{-2} 10^{-3} 10^{-4}
\end{array}
$$

Note: If pin 37 is set to 1 , the decimal point shifts right.


## Input/Output Circuits

Input circuits

- Data request input

o Start, interval, or other
external control inputs


Output circuits
o Data output strobe output


- Data output

- Status output

Pulse output


## 5-3. INSTALLATION PROCEDURE

The TR2730-520 BCD Output/External Control option card is installed in the card slot on the rear panel of the TR2731 Mainframe and is secured with two retention screws. The installation procedure is illustrated in Figure 5-4.
(1) Remove one of blank panels $A, B, C$, or $D$ from the rear card slot on the rear panel of the TR2731 Mainframe.

(2) Place the card on the board guide in the slot and insert the card fully into the slot. After plugging the card into the slot connector, secure it with the two retention screws.


This photo shows another option card.

Fig. 5-4 Option card installation procedure

## 5-4. DESCRIPTION OF CARD PANEL



Fig. 5-5 TR2730-520 option card panel
(1) BCD output connector

This connector provides BCD output of data and some other signals. It uses a 50-pin receptacle (Amphenor 57-40500).
(2) External control connector

External control input/output signals are available on this connector. It uses a $14-\mathrm{pin}$ receptacle (Amphenor 57-40140).
(3) ON/OFF switch

This switch enables (ON) or disables (OFF) BCD output. If no BCD output is required, set this switch to OFF.
This switch has no effect on external control input/output.

The TR2730-520 option card can provide BCD parallel output of five digits data and three digits channel-number for single log scan. In addition, the option card also outputs a function code indicating data type and polarity, decimal point position code, and unit code along with data.

When data is logged by log scan, clock time data is first output, which is followed by measurement information, and finally an end code. In the multi-user log scan mode, clock time data is preceded by a user number. No label, non-standard unit, computation mode or program list are output. Data output timing is shown in Figure 5-6.

Data is output together with an output strobe signal. Upon receiving a data output request from an external unit, the card outputs the next data. The next $\log$ scan sequence is not started until all measurement information is output. If no data output request is received within the time-out interval specified for the TR2731, the data output sequence is interrupted.


Data processing


Fig. 5-6 $B C D$ parallel data output timings

1. A data request is required for sending an end command as well.
2. The next $\log$ scan is not started until all measurement information for the preceding scan is output. If output of the preceding scan data is not completed when the next scan time is reached, the scan is skipped.
3. If a data transfer error occurs while transferring data to/from a sensor terminal, the subsequent scan is interrupted and the instrument sends an end code. However, measurement is continued for all other sensor terminals.
4. If output data exceeds five digits, only the most significant five digits are output. However, if bit input (8 bits) is specified for the TR2730-530 BCD Input option card, the least significant five bits are output in $1 / 0$ format.
5. If the output operation is suspended due to time-out, the instrument regards all data to have been output.

The TR2730-520 option card can provide control input/output signals useful for maintaining synchronization with external units or input responses.

A separate $14-\mathrm{pin}$ connector is provided for external control signal input/output. The available control signals are listed in Table 5-4, and input/output timings for each signal are shown in Figure 5-7. Signal interface is, in principle, done through relays. Log scan start/stop signals are available separately for the single and multi-user log scan modes, and are logically OR'ed with panel keys. The interval. signal is valid only when $\log$ scan is specified for the external interval mode, and determines the scan interval for the second and subsequent scans. The scan step signal is output only when the filter function is activated.

Table 5-4 Control signal types

| Signal name |  | Function | Make time |
| :--- | :--- | :--- | :--- |
| Input <br> signals | Start/stop | External start/stop for single user log <br> scan | Approx. 100 ms |
|  | Multi-user <br> start/stop | External start/stop for multi-user log <br> scan | Approx. 100 ms |
|  | Interval | Scan command pulse for external interval <br> mode | Approx. 100 ms |
|  | Scan start | Output at the beginning of a log scan <br> (calibration). | Approx. 100 ms |
|  | Scan end | Output at the end of a log scan. | Approx. 100 ms |
|  | Scan step | Output after the specified number of <br> filter function executions is received. | Approx. 20 ms |
|  | Log status | Output during data logging. | Start to stop |

1. The external interval signal is valid only when the external interval mode is specified. The first log scan is performed when logging is started.
2. The multi-user start/stop signal is valid only when the multi-interval mode is specified.
3. The start/stop signals have pulse form to provide start and stop commands alternately.


Fig. 5-7 Control signal input/output timings


Fig. 5-8 Scan step signal output timing

5-7. OPERATING INSTRUCTIONS

When using the TR2730-520 BCD Output/External Control option card, set its ON/OFF switch to ON to check data transfer to external units. Press the OUTPUT ENABLE key on the front panel of the TR2731 Mainframe. (The lamp in the key lights.)

If $\log$ scan data is to be output to the internal printer as well as an external unit, activate the LOG DATA key in the PRINTER section. (The lamp in the key lights.) However, if high speed data transfer to an external unit is desired, the LOG DATA key must be set to the print disable state (key lamp goes off) to stop data output to the internal printer, because the data transfer speed would be the same as the internal printer's print speed if data output to the internal printer is left enabled.

The instrument is now ready for $\log$ scan start/stop.

6-1. GENERAL

The TR2730-530 BCD Input Option card accepts BCD parallel inputs of the digital measuring instrument's measurement information, positional information, digital manometer's output data, etc.
This option card outputs a start pulse at the beginning of each log scan, and reads data at the end of analog input scan (waits for the end of $\log$ scan if the measurement time of external digital instrumentation equipment is terminated earlier). Digital input is assigned to a specific channel and can be subjected to computation or limit identification. An internal jumper connection permits bit pattern input specification for up to eight bits.
Up to four TR2730-530 option cards (4 channels: Channels 501 through 504) can be installed in the TR2731 Mainframe at one time.

6-2. SPECIFICATIONS


## Concurrent use with the TR2730-580 Pulse Counter option card is not permitted.



Fig. 6-1 Input connector pin assignment

Table 6-1 Input code table (data, function, unit)

| 8 | 4 | 2 | 1 | Data | Function | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | Over | mV |
| 0 | 0 | 0 | 1 | 1 | - | None |
| 0 | 0 | 1 | 0 | 2 | + | V |
| 0 | 0 | 1 | 1 | 3 | + | ${ }^{\circ} \mathrm{C}$ |
| 0 | 1 | 0 | 0 | 4 | + | None |
| 0 | 1 | 0 | 1 | 5 | + | None |
| 0 | 1 | 1 | 0 | 6 | + | None |
| 0 | 1 | 1 | 1 | 7 | + | None |
| 1 | 0 | 0 | 0 | 8 | + | None |
| 1 | 0 | 0 | 1 | 9 | + | None |
| 1 | 0 | 1 | 0 | 0 | + | None |
| 1 | 0 | 1 | 1 | 0 | + | None |
| 1 | 1 | 0 | 0 | 0 | + | None |
| 1 | 1 | 0 | 1 | 0 | + | None |
| 1 | 1 | 1 | 0 | 0 | + | None |
| 1 | 1 | 1 | 1 | 0 | + | None |

Table 6-2 Input code table (decimal point)

| 4 | 2 | 1 |  |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | $10^{0}$ |
| 0 | 0 | 1 | $10^{1}$ |
| 0 | 1 | 0 | $10^{2}$ |
| 0 | 1 | 1 | $10^{3}$ |
| 1 | 0 | 0 | $10^{4}$ |
| 1 | 0 | 1 | $10^{5}$ |
| 1 | 1 | 0 | $10^{6}$ |
| 1 | 1 | 1 | $10^{7}$ |

$$
\begin{aligned}
& \text { ○. ○. ○. ○. ○. ○. } \\
& \begin{array}{lllllll}
10^{6} & 10^{5} & 10^{4} & 10^{3} & 10^{2} & 10^{1} & 10^{0}
\end{array}
\end{aligned}
$$

6-3. INSTALLATION PROCEDURE

The TR2730-530 BCD Input option card is installed in a card slot on the rear panel of the TR2731 Mainframe and is secured with two retention screws. The installation procedure is as follows:
(1) Remove one of blank panels A, B, C, or D from the card slot on the rear panel of the TR2731 Mainframe.

(2) Specify the card number for this option card as follows:


Mark O: ON
Mark $\mathrm{x}: ~ \mathrm{OFF}$

Fig. 6-2 Card number specification

## CAUTION

If only one option card is to be used, specify card number 1 for the card. If two option cards are to be used, specify card numbers 1 and 2 for the cards. If there is more than one card having the same card number or card number assignment is not consecutive, an operation error may result. It is recommended to use the supplied card number sticker on the cards to be used.
(3) If the option card is to be used in the bit mode, connect the jumper wire shown in Figure 6-2 as shown in Figure 6-3.


Normal BCD input mode Bit input mode

Fig. 6-3 Jumper connection for bit mode
(4) Place the card on the board guide in the slot and insert it fully into the slot. After plugging the card into the slot connector, secure it with the two retention screws.


Fig. 6-4 Option card installation procedure


Fig. 6-5 TR2730-530 panel description
(1) Input connector

This connector accepts digital input signals. It uses a $50-\mathrm{pin}$ connector (Amphenor 57-40500).
(2) ON/OFF switch

This switch enables (ON) or disables (OFF) digital input. If the digital input function is not to be used, set this switch to OFF.
(3) LEVEL switch

This switch selects the input signal's voltage levels.

6-5. PRINCIPLES OF OPERATION

The signal and data transfer directions between the TR2730-530 option card and an external digital instrument are shown in Figure 6-6. The option card transfers a measurement start signal to the external instrument when measuring starts, to trigger the instrument. When a data strobe signal is received from the instrument, the option card reads parallel measurement data from the instrument. Data read timings are shown in Figure 6-7.


Fig. 6-6 Directions of data and control signal transfer


Fig. 6-7 Data read timings

The option card outputs a measurement start signal at the beginning of log scan, and reads data from the external instrument when the analog input scan ends (case 1). If, at this time, no data strobe is received yet, the option card waits for data input until the time-out interval (approx. 2 sec.) expires (case 2). Therefore, if this option card is not used, its ON/OFF switch must be set to OFF or the option card itself must be excluded from scan channels. If not, the system always waits for time-out whenever a log scan sequence for the TR2741 is completed. This will make it impossible to increase the scan rate by reducing the log interval. By selecting an appropriate jumper wire on the TR2730-530 option card, 8-bit status information can be input, instead of BCD parallel code (case 3).

This bit pattern input will be useful when simultaneity is a particular concern for contact inputs using a thermocouple/voltage measurement terminal board or when the bit pattern itself has same meaning. In the bit mode, 8-bit information is read into the card at the end of log scan by shorting the measurement start signal line with the data strobe line. A printout of up to eight bits of ones and zeros (bit pattern) is available in this bit mode, while bit data is internally processed as binary numbers. For call channel as well, a printout of up to eight bits of ones and zeros is available.

6-6. DATA PROCESSING

In the $\log$ scan mode, data assigned to channels 501 through 504 are printed on the last line, as shown in Figure 6-8. The maximum data length on printout is six digits and eight bits for binary notation.


Fig. 6-8 Log scan data printout

Ordinary data on channels 501 through 504 are treated in much the same way as those transferred from the TR2741 Sensor Terminals. (However, output to the TR2730-520 BCD Output/External Control option card is limited to the most significant five digits.)
Since bit pattern input is internally treated as 8-bit binary data, data with all its bits set to 1 is internally treated as 255. If scaling or an arithmetic operation is specified for measurement information, the operation is performed on measurement data after it is converted from binary to decimal, and then the data is again converted into 8-bit $1 / 0$ code before output. When alarm output is to be used, not that a specific bit pattern of ones and zeros cannot be identified. It is identified by an eight-bit binary number (e.g. $01010001=81$ ).

## 6-7. PROGRAMMING SUPPORT

Programming for the TR2730-530 option card uses channels 501 through 504.

6-7-1. Boundary Channel Specification
(Programming contents)

| Group number | Boundary channel |
| :---: | :---: |
|  <br> Up to 40 groups are programmable. | If four TR2730-530 option cards are used, channels 501 through 504 are assigned to |


o To specify channels 2 through 10 , enter as follows:

Call the next group with the
key.
Press the 1 0 and
keys.

- To. specify channels 11 through 20, enter as follows:

Call the next group with the set/next
key.
Press the $\square$ , $\square$ , and SET/NEXT
$\square$ keys.

- To specify channel 501, enter as follows:
Call the next group with the $\square^{\text {SET/NEXT }}$
key.


$\square$
$\square$


SET/NEXT
(Programming contents)

$A$ and $B$ for equation ( $X-A$ )/B can be specified with signed 5-digit numbers ( $\pm 0.0001$ to 9999).

- To specify $A=0.2$ and $B=0.8$ for $G 01$,
enter as follows:

- To specify $A=-1.2345$ and $B=1.0$ for

G02, enter as follows:
SET/ NEXT

(Calls the next group.)


- To cancel G03 and perform no scaling operation, enter:
SET/NEXT

(Calls the next group.)


SET/NEXT

- To specify $A=-0.1$ and $B=1.5$ for G04,
enter:
sEt/ next
(Calls the next group.)


SET/NEXT


$::$

6-7-3. Unit Specification
(Programming contents)
Group number

## Unit

Specifiable by combinations of up to 4 alphanumeric characters

- To specify \% for G01, enter as follows:



## Program



- To specify $\mathrm{kg} / \mathrm{m}$ for $\mathrm{GO2}$, enter as
follows:
SET/NEXT
(Calls the next group.)
ALPHA

- To specify rpm for G04, enter as
follows:



## CAUTION

When digital inputs are to be used, no input range is necessary to specify. Measurement is not affected whether a voltage range or thermocouple range is selected, and the output units programming through the above key entry override the specification of another unit. If no unit is specified, it appears as a space on the printout.

## SECTION 7

TR2730-540 RELAY OUTPUT OPTION CARD

## 7-1. GENERAL

The TR2730-540 Relay Output option card can provide a make contact output if a specified limit value is exceeded during upper/lower limit identification processing by monitor or $\log$ scan. Output contacts can be arbitrarily assigned to alarm channels by programming. Each option card contains 21 relays, one of which provides a common output that is activated if over-limit data is generated on any of the channels. The output modes include pulse output, level output and manual recovery modes, which can be selected with the OUTPUT switch on the rear panel. Up to four option cards of 84 relays (of which 4 relays are for common output) can be installed in the TR2731 Mainframe.

## 7-2. SPECIFICATIONS

| Output relays | : 20 plus 1 (common relay) <br> (If any of 20 relays on a card is closed, the common relay is also closed.) |
| :---: | :---: |
| Installable cards | : Max. 4 cards (80 relays) |
| Output format | : Make relay |
| Contact ratings | : Max. 50 vdc, 0.2 A |
| Output connector | : Amphenor 50-pin connector (57-40500) Mating connector (57-30500) |
| Output mode | : 3 modes selectable with the rear switch |
| Pulse mode | : Pulse width approx. 150 ms |
| Level mode 1 | : Automatically opens when the data returns within the limit during scanning. |
| Level mode 2 | : Relay is opened by the Alarm Reset key. |
| Pin assignment | : See Figure 7-1. |
| Alarm group | : Max. 40 groups programmable. |



Fig. 7-1 Connector pin assignment

## CAUTION

The +5 V supply applied to pin 25 of this connector is for maintenance purpose only. When wiring to this connector, ensure not to short this pin with other pins.

## 7-3. INSTALLATION PROCEDURE

The TR2730-540 option card is inserted into a card slot on the rear panel of the TR2731 Mainframe and secured with two retention screws. The mounting procedure is as follows:
(1) Remove one of four blank panels $A, B, C$, or $D$ from the rear card slot.

(2) Specify the card number for the option card as follows:


| Switch No. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| 1 | 2 | 3 | 4 |  |  |
| 0 | $\mathbf{x}$ | $\mathbf{x}$ | $\mathbf{x}$ | Card 1 | (CHs. 1 through 20) |
| $\mathbf{x}$ | 0 | $\mathbf{x}$ | $\mathbf{x}$ | Card 2 | (CHs. 1 through 20) |
| $\mathbf{x}$ | $\mathbf{x}$ | 0 | $\mathbf{x}$ | Card 3 | (CHs. 1 through 20) |
| $\mathbf{x}$ | $\mathbf{x}$ | $\mathbf{x}$ | 0 | Card 4 | (CHs. 1 through 20) |

Mark O: ON
Mark X: OFF

Fig. 7-2 Card number specification

## CAUTION

If only one option card is to be used, set card number 1 for the card. If two option cards are to be used, set card numbers 1 and 2 for the cards. If there is more than one card having the same card number or card number assignment is not consecutive, an operation error may result. It is recommended to use the supplied card number sticker on the cards to be used.
(3) Place the card on the board guide in the slot and insert it fully into the slot. After plugging the card into the slot connector, secure it with the two retention screws.


Fig. 7-3 Option card installation procedure


Fig. 7-4 TR2730-540 panel description
(1) Output connector

This connector provides relay contact outputs. It uses a $50-\mathrm{pin}$ connector (Amphenor 57-40500).
(2) OUTPUT switch

This switch selects the output modes. Positions
 , $\Omega$ and $\sqrt{\text { of }}$ this switch select the pulse output, level 1 output, and level 2 output modes, respectively.

7-5. PRINCIPLES OF OPERATION

In the following descriptions, we use an example in which a make contact signal is output due to over-limit data detected as a result of limit identification during monitor scanning.

As shown in Fiạure 7-5, if an upper limit value (H) is exceeded, three types of output are available according to the settings of the OUTPUT switch.

If output mode 1 (pulse output) is selected with the OUTPUT switch, detection of data exceeding the upper limit setting during monitor scan closes the specified relay for approximately 150 ms .

If output mode 2 (level 1 output) is selected, the relay is closed the same as in output mode 1 , but it is opened if monitor scanning detects data returned within the specified limit value.

If output mode 3 (level 2 output) is selected, the specified relay is closed the same as in output mode 1 or 2 , but the front ALARM-RESET key must be operated to open the relay.
In addition to opening the relay, generation of over-limit data is also signaled by the front ALARM indicator lamp and internal electronic buzzer. The ALARM lamp remains on until data on all channels returns within the limit value. The alarm buzzer sounds for approximately two seconds if the limit value is exceeded on any of the channels when a single scan ends.
A similar operation sequence is executed if a lower limit value is exceeded or if over-limit data is detected by limit identification during log scan.


Fig. 7-5 Alarm sequence for monitor scan

## 7-6. PROGRAMMING SUPPORT

In the following programming example, group boundary channels, upper limit values and corresponding alarm-output relay numbers for each group, and lower limit values and corresponding alarm-output relay numbers are specified for each group as shown in Table 7-1.

Table 7-1 Programming example
\(\left.$$
\begin{array}{|c|c|c|cc|}\hline \begin{array}{l}\text { Group } \\
\text { number }\end{array} & \begin{array}{l}\text { Boundary channel } \\
\text { and mode }\end{array} & \begin{array}{l}\text { Upper limit Relay No. } \\
\text { value }\end{array} & \begin{array}{l}\text { Lower limit } \\
\text { value }\end{array}
$$ \& Relay No. <br>

\hline 1 \& 105 \mathrm{ch}, mon \& 130^{\circ} \mathrm{C} \& 1 \& 100^{\circ} \mathrm{C}\end{array}\right]\)|  |
| :---: |
| 2 |

7-6-1. Group Boundary Channel Specification
(Programming contents)

(Programming procedure)


- To specify channels 1 through 5 for
group 1 and perform limit
identification for monitor scan data,
enter as follows:

(Simplified entry procedure)
a.


Entry of terminal number 1 can be
omitted. If the channel number is
between 1 and 9 , entry of the
preceding 0 can be omitted.
b.


If the limit identification mode is
monitor, entry of,, and
can be omitted.

- To specify channels 6 through 10 for
group 2, enter as follows:

* Simplified entry for monitor scan specification.
* If only one terminal is used, no terminal number is shown in the
 display.
- To specify channels 11 through 20 for
group 3, enter as follows:
Call the next group with the $\square^{\text {SET/NExT }}$
key.
Press the 2,0 and


SET/NEXT
keys.
o For channels 21 through 40, limit
identification is performed on logged
data after it is subjected to
computation.
(Group 4)

key.


```
O To divide channels 11 through 20 into
    subgroups of channels 11-15 and
    channels 16-20, enter as follows:
    (Interrupt)
    \ST/NEXT
```



This interrupt operation searches for
a subgroup insertion position (between
groups 1 and 4) and, if inserted, automatically shifts the subsequent group numbers. In this example, boundary channel 15 is inserted
between channels 11 and 20 (G3). Let
us check the change in the group
configuration resulting from this
insertion.
As the current group number display is
G03, enter as follows to return the
display to group 1:


Recalls G02.
Recalls G01.
The two consecutive operation of the (BACK)
\# key recalls preceding group.
This recall procedure would take too
much time, if group display must be
returned from G20 to G01. In such a
case, use the following alternative:


- Then advance group display in sequential order to check the new
group configuration with:
set/next


## Ge ubemma

nes usthmon
SET/NEXT

SET/MEXT
De4 Iebumma
Qs isthma

- To delete group 2, enter as follows:

Directly recall group 2 with the (BACK)
\#, 2
Press the CLEAR and SET/NEXT
Press the

and

keys.
When group 2 is deleted, the


| O-m: | ¢ |
| :---: | :---: | subsequent group numbers are shifted in descending direction (i.e. G03 G02, G04 - G03, and so forth).

7-6-2. Limit Values and Contact Output Channel Specification

## (Programming contents)

Limit values $\quad$ Output channel
$\left\{\begin{array}{l}\text { Upper limit } \\ \text { Lower limit }\end{array}\right.$

Up to 80 output channels can be specified (using the contact outputs of the Relay Output option card).
(Programming procedure)

- To specify $+130.0^{\circ} \mathrm{C}$ for the upper
limit value for group 1 and output a
make signal on contact channel 1 if
this upper limit value is exceeded,
enter as follows:


Note that if no boundary channel is specified, limit values can not be
specified. In such a case, "....." "
will be displayed as shown on the
right.


- To specify a lower temperature limit of $+100.0^{\circ} \mathrm{C}$ for group 1 and output a make signal on contact channel 2 if this limit value is exceeded, enter as follows:

Call the lower limit value with


SET/NEXT


```
:
```





- Specify an upper limit of $+220.0^{\circ} \mathrm{C}$
and contact channel 15 for group 4,
and a lower limit of $-5.0^{\circ} \mathrm{C}$ and
contact channel 20 for the same group,
and activate the respective relays if
the limits are exceeded, as follows:

Currently programmed
[value (or blank)


(Simplified entry procedure)
When specifying upper and lower limit
values for the same group, entry of

limit value can be omitted since the
group is already called when
specifying the upper limit value.

## 7-7. SPECIAL APPLICATION PROCEDURE

When individual relays are specified for each group, up to 40 different output can be made typically. If relay number is specified as "0", data can be output to the relay having the same number with measuring channel. Up to 40 groups can be specified for upper/lower limit identification. And two or more TR2741 Sensor Terminals are used, terminal number is ignored.
(Example 1)
When channels 1 through 80 are measured by log scan, the same lower limit value is used for identification in all channels, and corresponding relays are activated for each channel,

| Group number | Group channel and mode | Upper limit <br> value | Relay <br> number | Lower limit <br> value | Relay <br> number |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $180 \mathrm{ch}, \log$ | - | - | 1.250 V | 0 |


(Example 2)
When 120 channels are to be measured, two types of measurement
(temperature and voltage) are performed, ten groups for upper limit identification is specified and the identification result for two types of measurement range being output to the relay having the same number with the measuring channel,

| Group number | Group channel and mode | Upper limit Relay <br> value <br> number | Lower limit Relay <br> value |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 | $110 \mathrm{ch}, \quad \log$ | $120.0^{\circ} \mathrm{C}$ | 0 | - |
| 2 | $120 \mathrm{ch}, \quad \log$ | $100.0^{\circ} \mathrm{C}$ | 0 | - |
| 3 | $130 \mathrm{ch}, \quad \log$ | $80.0^{\circ} \mathrm{C}$ | 0 | - |
| 4 | $140 \mathrm{ch}, \quad \log$ | $115.0^{\circ} \mathrm{C}$ | 0 | - |
| 5 | $160 \mathrm{ch}, \quad \log$ | $180.0^{\circ} \mathrm{C}$ | 0 | - |
| 6 | $210 \mathrm{ch}, \quad \log$ | 11.5 mV | 0 | - |
| 7 | $220 \mathrm{ch}, \quad \log$ | 20.0 mV | 0 | - |
| 8 | $230 \mathrm{ch}, \quad \log$ | 180.0 mV | 0 | - |
| 9 | $240 \mathrm{ch}, \quad \log$ | 1.5 V | 0 | - |
| 10 | $260 \mathrm{ch}, \quad \log$ | 1.8 V | 0 | - |



Either or both of measurement data on 101 and/or 201 CH . is exceeded upper limit value, relay number 1 is activated. Similarly, either or both of measurement data on 111 and/or 211 CH . is exceeded upper limit value, relay number 11 is activated.

## SECTION 8

TR2730-550 ANALOG OUTPUT OPTION CARD

## 8-1. GENERAL

The TR2730-550 Analog Output option card provides digital-to-analog conversion on logged data and outputs in analog form corresponding to input digital information, and is useful for observing data variations. Analog output is available in two ranges of $\pm 9.99 \mathrm{mV}$ and $\pm 0.999 \mathrm{~V}$, and is electrically isolated from all other circuits on the card. Available analog output functions include measured value output, scaling operation, inter-channel subtraction, output digit selection (arbitrary three digits of data values), entry of $50 \%$ offset of full-scale for observing data varying near zero level, and so forth. The option card provides six output channels per card, and up to two cards can be installed in the TR2731 Mainframe.

8-2. SPECIFICATIONS

Output voltage range: $\pm 9.99 \mathrm{mV}(10 \mathrm{mV}$ range) and $\pm 0.999 \mathrm{~V}$ (1 V range) are selectable with an on-board slide switch.

Conversion accuracy: $\pm 0.3 \%$ of $f . s . / 10 \mathrm{mV}$ range
$\pm 0.3 \%$ of $\mathrm{f} . \mathrm{s} . / 1 \mathrm{mV}$ range
Guaranteed for 6 months under an ambient temperature of $+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with relative humidity of $85 \%$ or lower.

Conversion speed : Approx. 1 sec. or more in repetitions
Output impedance : Approx. $150 \Omega / 10 \mathrm{mV}$ range
Approx. $1 \mathrm{k} \Omega / 1 \mathrm{~V}$ range
Output update timing: Monitor scan interval
Conversion digits : Either of most, medium or least significant 3 digits Output channels : 6 channels per card Up to two option cards can be installed in TR2731.
Output terminals : Screw terminals (4 mm)

Contact input : If contact input is specified, contact ON and OFF are counted as 1 and 0 respectively. The scaling function is used for positional and amplitude variations of analog output.

Digital offset : Voltage offset of $50 \%$ full-scale can be entered or eliminated for each channel. Polarity is automatically identified.

8-3. INSTALLATION PROCEDURE

The TR2730-550 option card is inserted into a card slot on the rear panel of the TR2731 Mainframe and secured with two screws.
(1) Remove one of four blank panels $A, B, C$, or $D$ from the card slot in which the option card is to be inserted.

(2) Specify the output range and card number with three slide switches on the card.

$$
\underset{7 \sim 12}{\leftarrow} \underset{\rightarrow}{1 \sim 6} \quad \stackrel{\text { IV }}{\leftarrow} \xrightarrow{10 \mathrm{mV}}
$$



Fig. 8-1 Locations of the range and card number setting switches
a. Range switch

To select the 1 V range, slide the range switch shown in Figure 8-1 to the left (towards printed letter "1"). To select the 10 mV range, slide the switch to the right.

S161 is for channels $1-3$ and 7-9, and S162 is for channels 4-6 and 10-12.
b. Card number switch

Up to two TR2730-550 option cards can be installed in the TR2731 Mainframe.
When only one option card is to be used, slide the switch $(S 163)$ shown in Figure $8-1$ to the right. This will specify analog output channels 1 through 6 .

When two option cards are to be installed, slide the switch on the second card to the left. This will specify analog output channels 1 through 6 on card 1 and output channels 7 through 12 on card 2.
If the switch is not set correctly when only one card is to be used, an operation error may occur. Use the supplied card-number sticker on the cards.
(3) Place the card on the board guide of the card slot and insert it fully into the slot. After plugging the card into the slot connector, secure it with the two screws.


Fig. 8-2 Option card installation procedure

8-4. PANEL DESCRIPTION AND CONNECTION
8-4-1. Panel Description


|  | Card 1 | Card 2 |
| :---: | :---: | :---: |
| Channel | 1 | 7 |
| Channel | 2 | 8 |
| Channel | 3 | 9 |
| Channel | 4 | 10 |
| Channel | 5 | 11 |
| Channel | 6 | 12 |

Fig. 8-3 TR2730-550 option card panel description
(1) Output terminal block

This terminal block provides analog outputs for CH. $1, \mathrm{CH} .2$..... CH. 6 in pairs from top to bottom of the terminal column. On the second card for which channels 7 through 12 are specified, this terminal block provides outputs for CH.7, CH. 8 ..... CH. 12 from top to bottom.
The right-hand terminals have positive (+) polarity. While all outputs are isolated from the internal circuitry, the negative terminals are internally connected together to provide a common level.

## 8-4-2. Connecting to External Units

This item describes how to connect the analog output terminals to external units such as chart recorders, etc.

The connection methods shown in Figure 8-4 are available. Choose the most appropriate method according to the environmental noise conditions, etc. Also note the following points:
(1) Interconnecting cables should be as short as possible.
(2) Earth both the instruments, preferably at one point.


Fig. 8-4 Connecting the TR2730-550 with external units

The TR2730-550 option card can automatically provide voltage output of both polarities (+ and -) according to the polarity of input digital information.

If input data varies from 999 to 000 , the output voltage will change from full-scale to zero, resulting in discontinued signal response on a recorded chart. To prevent this, activate the $50 \%$ offset function, which will add 500 to the input digital data before converting it into an analog voltage. This will facilitate observation of data varying around the zero level.


Fig. 8-5 Digital data vs. output voltage in the 1 V range (in the 10 mV range, output voltage is reduced to $1 / 100$ of that in the 1 V range.)

A programming example for the appropriate offset, recorder's span, polarity and zero point is shown in Table 8-1 in reference to the ranges of input digital information. A similar programming procedure can also be used for larger digital data than that listed in this table.

Table 8-1 Programming example for offset and recorder's input range in the 1 V range (in the 10 mV range, the recorder span is reduced to $1 / 100$.)

| Input data | Offset | Output voltage | Span | Polarity | Zero point |  |  |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1500 to 2499 | on | 0 | to 0.999 V | 1 V | + | Left end |  |
| 1000 to 1999 | off | 0 | to 0.999 V | 1 V | + | Left end |  |
| 500 to 1499 | on | 0 | to 0.999 V | 1 V | + | Left end |  |
| 0 to 999 | off | 0 | to 0.999 V | 1 V | + | Left end |  |
| -999 to 999 | off | -0.999 to 0.999 V | 2 V | + | Center |  |  |
| -500 to 499 | on | 0 | to 0.999 V | 1 V | + | Left end |  |
| -1499 to 499 | on | -0.999 to 0.999 V | 2 V | + | Center |  |  |
| -999 to | 0 | off | -0.999 to 0 | V | 1 V | + | Right end |
| -999 to | 0 | off | -0.999 to 0 | V | 1 V | - | Left end |
| -1499 to -500 | on | -0.999 to 0 | V | 1 V | + | Right end |  |
| -1499 to -500 | on | -0.999 to 0 | V | 1 V | - | Left end |  |
| -1999 to -1000 | off | -0.999 to 0 | V | 1 V | + | Right end |  |
| -1999 to -1000 | off | -0.999 to 0 | V | 1 V | - | Left end |  |
| -2499 to -1500 | on | -0.999 to 0 | V | 1 V | + | Right end |  |
| -2499 to -1500 | on | -0.999 to 0 | V | 1 V | - | Left end |  |

## 8-5. PRINCIPLES OF OPERATION

The Analog Output option card can provide scaling and interchannel subtract operations on monitor scan data before converting it into the corresponding analog voltage. As shown in Figure 8-6, the output level changes after each monitor scan. This means that the appropriate monitor scan interval must be selected according to input variations. If the monitor scan overlaps with the $\log$ scan, the log scan overrides the monitor scan. While the monitor scan is overridden by the log scan, the preceding monitor scan data is maintained.


Fig. 8-6 Analog output vs. input data

As shown in Figure 8-7, the most, medium, or least significant digits of input data can be selected for conversion. At this time the decimal point in input data is ignored. If the TR2730-530 BCD Input option card is used with the TR2730-550 Analog Output option card, input data has six digits, but the most significant digit is not to be converted to analog form.

Most
significant
3 digits


When the BCD Input option card is used, this digit is not converted.

Fig. 8-7 Digit selection
If the TR2731 is programmed for contact input, output of the option card is available in 0 or 1 count. The full span of 999 counts may be scaled down by the scaling function. If $A=0$ and $B=0.01$ is assumed, equation ( $\mathrm{X}-\mathrm{A}$ )/B gives:
When $O N \rightarrow 1:(1-0) / 0.01=100$
When OFF $\rightarrow 0:(0-0) / 0.01=0$
This is illustrated in Figure 8-8.
If multiple channels are used, the ON level on the recorder can be varied by changing value $B$, and hence responses between multiple channels are distinguished on the chart.


Fig. 8-8 Contact input scaling

## 8-6. PROGRAMMING SUPPORT

This paragraph describes the TR2731 programming procedures necessary for operating the TR2730-550 Analog Output option card correctly. When specifying 12 analog-output channels ( 2 option cards) out of the channels specified for monitor scan, first specify monitor scan, then specify the analog output channels.

8-6-1. Monitor Interval Specification

In the following programming information, all channel scan means scanning of all channels specified as scan channels. Selective channel scan means scanning of the channels specified for the option card's analog output (up to 12 channels).
(Programming contents)


If output channels for the Analog Output option card must be specified in the all channel scan mode, or if selective channel scan is to be executed, enter as follows (max. 12 channels):
(Programming contents)


0 : Least significant 0 : Without offset (: : : : : : $:=:$
Normal 3 digits (

number
3 digits ( $\left.\begin{array}{l}\vdots \\ \vdots . . . . . . ~) ~\end{array}\right)$
2: Most significant
3 digits ( $\left(\begin{array}{c}\because \\ \vdots \\ \vdots\end{array}:\right.$
(Programming procedure)
scan


- To perform a monitor scan in the all
channel scan mode at 10 -second
intervals, enter as follows:

(Simplified entry procedure)


Entry of
 for 0 minute can be omitted.
b.


When specifying the all channel scan

can be omitted.
o Set the interval to 10 seconds with:

o Specify continuous scan with:


When specifying analog output
Channels, output the least significant
three digits of data on channel 1 of
terminal 1 to analog output channel 1 .

- To assign the terminal's channel 1 to analog output channel 1, enter as
follows:

$\uparrow$ With no offset
(Simplified entry procedure)
a.


SEt/next

If the output digit positions and
offset specification are normal, entry
between the first $\square$ and the last
o can be omitted.

Assign the terminal's channel 1 to
analog output channel 1 with the

| 1 | and | keys. |  |
| :---: | :---: | :---: | :---: |

- To execute monitor scan on only five
channels of Channels $5,10,15,20$,
and 25 at 15 -second intervals, and to
output the most significant three
digits of scan data with no offset to
analog output channels 1 through 5,
enter as follows:


$\square$
फि स्世म, $\mathrm{E}, \mathrm{F}$
サिए \% :-
णिए $\mathrm{AF} \mathrm{E}, \mathrm{\theta}$


## TR2730-560 SERIAL DATA OUTPUT OPTION CARD

9-1. GENERAL

The TR2730-560 Serial Data Output option card provides serial data output of measurement information or program listings to a CRT display, serial printer, or other external serial output units for real-time data monitoring or batch data recording. The normal data output format is RS-232C. Modification to 20 mA current loop output is permitted only on connector 1. For more details refer to paragraph 9-6.

In the multi-user mode, up to four local output terminals are available for individual users.

Transfer is available in six rates between 300 bps and 9600 bps. Remove this option card when no external equipment is connected or operated.

9-2. SPECIFICATIONS

Output connectors : 4 (Japan Aviation Electronics Industry, Ltd. DE-9S)
(Mating plug: DE-9P)
This is one output port, however.
Pin assignment : (1) Safeguard GND
(2) (External unit ready)

(3) Output data
(4) Request to send
(5) Send enabled
(6) Unit ready
(7) Signal ground
(8) Carrier sense

```
Connecting cables : MC-82-01 ( 5 meters) (optional)
    MC-82-01 (15 meters) (optional)
```



```
Japan Aviation
Electronics Industry Ltd.
DE-9P or equivalent
```

Japan Aviation Electronics Industry Ltd. DB-25P or equivalent

DB-25P connector pin assignment:
Signal direction

| Pin No. | Signal name | TR2730-560 | External unit |
| :---: | :---: | :---: | :---: |
| 1 | Safeguard GND |  |  |
| 3 | Data output | $\longrightarrow$ |  |
| 4 | Request To Send signal | $\longleftarrow$ | H: Send enable |
|  |  |  | L: Send disable |
| 5 | Send Enable signal | - | Fixed to HIGH. |
| 6 | Unit Ready signal | $\cdots$ | Fixed to HIGH. |
| 7 | Signal ground |  |  |
| 8 | Carrier Sense signal | $\cdots$ | Fixed to HIGH. |
| 20 | External Unit Ready signal | $\leftarrow$ | H: Send enable |

Normally, data send enable/disable is checked with the External Unit Ready signal at pin 20. If it is desired to do this check with the Request To Send signal at pin 4 , the jumper wire on the card needs modifying.

Input/output circuits:


Change the jumper wires ( $1 \mathrm{C}, 2 \mathrm{C}$, $3 C$, or $4 C$, as required ) to $R D$ when pin 4 signal is to be used for checkup.

Normal

0 CS
0 RD

Changed


## Electrical characteristics:

Signal level : Mark and stop bit ---- LOW
Space and start bit ---- HIGH
Output voltage levels: HIGH --- +8 V to +12 V LOW ---- -8 V to -12 V

Input voltage levels: HIGH --- +3 V to +15 V LOW -_-- -3 V to -15 V

Note: The time-out interval for busy check is 10 seconds. If no response is returned in 10 seconds, output will be halted.

Transfer bit configuration: 11 bits/character


The parity bit is specified for even number.


```
*CRLF
[USER ID][SP][LABEL][SP] [TIME]CRLF
[CH, DATA] [SP] [CH, DATA] [SP] [CH, DATA]CRLF
[CH, DATA] [SP] [CH, DATA] [SP] [CH, DATA]CRLF
    \vdots ! ! !
[CH, DATA] [SP] [CH, DATA] [SP] [CH, DATA]CRLF
*CRLF
*CRLF
[CH, Secondary arithmetic operation data][SP][CH, Secondary
arithmetic operation data] [SP] [CH, Secondary arithmetic operation
data]CRLF
    \vdots ! ! !
[CH, Secondary arithmetic operation data] [SP][CH, Secondary
arithmetic operation data] [SP] [CH, Secondary arithmetic operation
data]CRLF
CRLF
[Group No., DATA] [SP] [Group No., DATA] [SP] [Group No., DATA]CRLF
[Group No., DATA] [SP][Group NO., DATA][SP] [Group NO., DATA]CRLF
*CRLF
```

1. Source data or primary arithmetic operation data
2. Secondary arithmetic operation data (deviation)
3. Other secondary arithmetic operation data

Fig. 9-1 Output format printout example (3 data/line)

## Description for Figure 9-1 Output format printout example

(1) If only primary arithmetic operation is executed, data output is terminated at the *CRLF after the primary arithmetic operation data is output.
(2) If deviation or any other operation of the secondary arithmetic operations is not executed, the section indicated by "\{" in the figure is defaulted.
（3）If source data output inhibit is specified，the section indicated by＂\｛＂is also defaulted．
（4）Unless otherwise specified，［USER ID］and［LABEL ］are defaulted．
（5）The contents of square brackets are as follows（：space）：
［USER ID］
［LABEL ］
［TIME ］
［SP］
［CH，DATA］
［CH，secondary arith－ metic operation data］
［Group No．，DATA］

USER - \＃
○○○○○○○○ーーーールールールールー
ールールー○○ー○○：○○：○○ールール




（6）If the page mode is selected，a from feed code（hex OC）is output after 60 lines are printed．
（7）If the number of output data（character）digits is less than those specified in each square brackets shown above，the output data （characters）is right justified on each item，and blanked digit positions are filled with space codes．
（8）When only one terminal is used，a space code is output at the most significant digit of a channel number（terminal number）．
（9）．Output for error and contact range

OOOーபーナ SENS $\sqcup$ OUT $\sqcup \sqcup O O \square$


OOO





Contact range off
Contact range ON

Sensor fault
Over
Transfer error
Computation error
Linearization error
Room temperature
compensation error
Other error
When a three－wire RTD is used，the resistance per
wire exceeds $10 \Omega$.

## 9-3. INSTALLATION PROCEDURE

The TR2730-560 option card can be inserted into a card slot of the TR2731 Mainframe rear panel and secured with two screws. The installation procedure is illustrated in Figure 9-2.
(1) Remove one of four blank panels A, B, C, or D from the card slot in which the option card is to be inserted.

(2) Place the option card on the board guide in the slot and insert it fully into the slot. After plugging the card into the card connector, secure it with the two retention screws.


* This photo shows another option card.

Fig. 9-2 Option card installation procedure


Fig. 9-3 TR2730-560 panel description
(1) Output connector

This 9-pin connector (Japan Aviation Electronics Industry, Ltd. DE-9S) provides serial data output.
(2) DIP switch

Bit functions of this DIP switch are shown below.


Note: The switch should be specified according to 1/0 specifications in the following tables (the ON/OFF labels on the switch should be ignored.).

PAGE

OUTPUT

FORMAT

| Bits |  | Data/line |
| :---: | :---: | :---: |
| 5 | 4 |  |
| 0 | 0 | 1 |
| 0 | 1 | 3 |
| 1 | 0 | 4 |
| 1 | 1 | 5 |


| Bits |  |  | bits/s |
| :---: | :---: | :---: | :---: |
| 3 | 2 | 1 |  |
| 0 | 0 | 0 |  |
| 0 | 0 | 1 |  |
| 0 | 1 | 0 | 9600 |
| 0 | 1 | 1 | 4800 |
| 1 | 0 | 0 | 2400 |
| 1 | 0 | 1 | 1200 |
| 1 | 1 | 0 | 600 |
| 1 | 1 | 1 | 300 |

9-5. OPERATING INSTRUCTIONS
9-5-1. Single User Log Scan Data Output

Specify the number of output units to be attached, data transfer rate and data format with the DIP switch on the option card panel. After setting the switch, connect the external unit to connector 1 •
(Programming example)
Connecting to an EPSON RP-80:
(1) Set the DIP switch on the option card as follows:

(2) The following interconnecting cables are provided optionally: MC-82-01 (5 meters) MC-82-02 (15 meters)
(3) Set up the serial interface board on the RP-80 for the following situations:

Table 9-1 RP-80 interface board jumper settings


Note: ON means jumper connected, OFF means jumper disconnected.

Table 9-2 Baud rate seting

| Bit per second | SW1-1 | SW1-2 | SW1-3 | SW1-4 | Settings for connection to TR2730-560 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 75 | OFF | OFF | ON | ON |  |
| 110 | ON | ON | OFF | ON |  |
| 1345 | OFF | ON | OFF | ON |  |
| 150 | ON | OFF | OFF | ON |  |
| 200 | OFF | OFF | OFF | ON |  |
| 300 | ON | ON | ON | OFF |  |
| 600 | OFF | ON | ON | OFF |  |
| 1200 | ON | OFF | ON | OFF |  |
| 1800 | OFF | OFF | ON | OFF |  |
| 2400 | ON | ON | OFF | OFF |  |
| 4800 | OFF | ON | OFF | OFF | - |
| 9600 | ON | OFF | OFF | OFF |  |
| Self test | ON | ON | ON | ON |  |
| Note: - 8-bit DIP switch: SW1-1 to SW1-8 <br> 4-bit DIP switch: SW2-1 to SW2-4 |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

Table 9-3 Flag reset timming

| Residual bytes in data buffer | SW1-5 | SW1-6 | Settings for <br> connection to <br> TR2730-560 |
| :---: | :---: | :---: | :---: |
| 152 | ON | ON | O |
| 289 | OFF | ON |  |
| 560 | ON | OFF |  |
| 1936 | OFF | OFF |  |

Table 9-4 RP-80 interface board DIP switch settings

| DIP switch pin No. | Function | Settings for <br> connection to <br> TR2730-560 |
| :---: | :--- | :--- |
| SW1-7 | ON: Parity check disabled <br> OFF: Parity check enabled | OFF |
| SW1-8 | ON: Even parity <br> OFF: Odd parity | ON |
| SW2-1 | ON: 7-bit word length <br> OFF: 8-bit word length | ON |

Table 9-5 SW2 setup

| DIP switch pin No. | Function |  |  |  | Settings for connection to |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SW2-2 | ON | In the serial data input inhibit state, reverse channel = mark (RS-232C), TTY-TXD = mark (current loop) | OFF | In the serial data input inhibit state, reverse channel = space (RS-232C), TTY-TXD = space (current loop) | ON |
| SW2-3 | OFF |  | ON |  | OFF |
| SW2-4 | ON: Reverse channel available OFF: Reverse channel is fixed |  |  |  | ON |

Note: Do not set both SW2-2 and SW2-3 to ON; it will cause malfunction.


Fig. 9-4 RP-80 interface board parts layout
(4) After completing the above settings and connections, press the OUTPUT ENABLE key on the TR2731 Mainframe front panel; the lamp in the key lights.

Now data printout for each log scan is ready:

## CAUTIONS

1. When external output units are connected, set the recording paper to the home position before starting log. If the Page mode is specified, a new page operation is performed at the end of each 60-line printout.
2. External output is not available for alarm printout.


Fig. 9-5 Serial data printout example I

In the multi-user $\log$ scan mode, data for individual users can be output to user-independent units respectively.


Fig. 9-6 Outline of multi-user $\log$ scan data output

If there are fewer attached units than the number of users, the data of remaining user (s) is output to the last unit. (Programming example)
(1) Set the DIP switch on the option card as follows:

(2) The following interconnecting cables are optionally available: MC-82-01 (5 meters)
MC-82-02 (15 meters)
(3) After completing the above settings and connection, press the OUTPUT ENABLE key on the TR2731 front panel; the lamp in the key lights.
(4) Make $\log$ start for each user. Log scan data for individual users will be printed on the four output units respectively.


CAUTIONS

1. Before starting log for each user, set the recording paper to the home position (if the page mode is selected, a new page operation is performed for each user.).
2. When more than one output unit is attached, the data transfer rate must be identical for all units.
3. The output format must also be identical for all attached units.
4. External output is not available for alarm printout.


Fig. 9-7 Serial data printout example II

When setup and connection are made according to the procedure given in paragraph $9-5-1$ or $9-5-2$, a program list can be output to the attached external unit by first activating the OUTPUT ENABLE key (the lamp in the key lights) and then pressing the PROGRAM LIST key (the lamp in the key lights), both on the front panel of the TR2731 Mainframe.

If the PROGRAM LIST key is pressed with the OUTPUT ENABLE key left inactive, the listing is delivered only to the internal printer. If more than one unit is attached, the listing is delivered to the unit connected to output connector No. 1, whether the multi-user mode is in use or not.


Fig. 9-8 Program listing printout example

While all the four outputs on the TR2730-560 option card typically have the RS-232C compatible output format, the output on connector 1 can be modified to the 20 mA current loop interface. Note that this modification is not available for connectors 2,3 , and 4. Pin assignment :


Current loop
(6) Output -
(7) Output +
(3) Busy +
(4) Busy -

Output format
: 20 mA current loop output


Input format
: 20 mA current loop input


Current ON: Data send disabled
Current OFF: Data send enabled
Modification method: Cut jumper wires across 1-9 of JP5.
Connect jumper wires across 1-6 of JP1.


10-1. GENERAL

The TR2730-570 Data Buffer Memory option card provides data buffering for up to 3200 data. If rapidly changing input events are logged while logged data is delivered to external output units or internal printer in real-time processing, the output operation may not catch up with data sampling speed. In such a case, logged data can be temporarily buffered in memory to deliver to output units at an optional transfer rate by using the TR2730-570 option card.

When data is logged in the multi-interval mode or data of several users are delivered to only one printer, this option card can also be effectively used to rearrange the data configuration on printout for each interval or user.


10-2. SPECIFICATIONS

Storage capacity and contents:

| Log scan mode | Interval | Memory contents (bytes) | Storage capacity <br> (number of data) |
| :---: | :---: | :---: | :---: |
| Single user | Single interval (Oh Om Os) | ```Data block start mark (2) Secondary operation discriminating code (2) Data (5) + (2) Data block end mark (2)``` | $\begin{aligned} & *-1 \\ & 3200 \end{aligned}$ |
|  | Single interval (1s or more) | ```Data block start mark (2) Time of every scan (7) Secondary operation discriminating code (2) Data (5) + (2) Data block end mark (2)``` | $\begin{aligned} & *-2 \\ & 3120 \end{aligned}$ |
|  | Multi-interval | ```Data block start mark (2) Time of every scan (7) Secondary operation discriminating code (2) Multi-mark (1) Channel number (2) Data (5) + (2) Data block end mark (2)``` | $\begin{aligned} & *-3 \\ & 2000 \end{aligned}$ |
| Multiuser | Multi-interval | ```Data block start mark (2) Time of every scan (7) Secondary operation discriminating code (2) Multi-mark (1) Channel number (2) Data (5) + (2) Data block end mark (2)``` | $\begin{aligned} & *-4 \\ & 2000 \end{aligned}$ |

Notes: 1) "Data (5) + (2)" shown is the memory contents' column of this table indicates that there are seven data bytes when the Digital Input option card is used. Typically, data sent from the TR2741 Sensor Terminals is 5-bytes long.
2) The number of bytes to be used in a single scanning is obtained from the following calculation:

A parenthesized number marked with in the "storage contents" column $x$ The number of measuring channels + a parenthesized number not marked with • .
3) The storage capacity (the number of data items) is calculated for an 80-channel scan (without the digital input option).

## Storage capacity calculation method

(1) The option card has a total storage capacity of 16384 bytes.
(2) \{ $\mathrm{N} x$ (Number of bytes of data (marked with•) + Number of bytes of other data (not marked with •) \}x M $\leqq 16384$

```
Where : \(N=\) Number of scan channels
    \(M=\) Number of scans
```

Calculate the number of scan (M) by the formula above, and then obtain the number of data items by multiplying $M$ and $N$.
(3) *-1
\{ 80 (number of channels) $x 5$ (number of bytes of data)
+6 (number of bytes of other data) \} $x M$ (number of scans)
$=16384$

$$
M=\frac{16384}{80 \times 5+6} \fallingdotseq 40
$$

$\therefore$ Number of data items $=39 \times 80=3200$
*-2
\{80 (number of channels) $x 5$ (number of bytes of data)
+13 (time and number of bytes of other data) \} $\mathrm{x} M$
(number of scans) $=16384$

$$
M=\frac{16384}{80 \times 5+13} \fallingdotseq 39
$$

Number of data items $=39 \times 80=3120$
*-3
\{ 80 (number of channels) $\mathrm{x}[1$ (multi-mark) +2 (channel number) +5 (number of bytes of data)] +13 (time and number of bytes of other data) $\} \times \mathrm{M}$ (number of scans) $=16834$

$$
M=\frac{16384}{80 \times 8+13} \fallingdotseq 25
$$

Number of data items $=25 \times 80=2000$
*-4 is the same as *-3.
The caluculations above assume that the number of scan channels is
80. If the number of scan channels is 1 , the storage capacity in
*-2 is calculated as follows:

$$
M=\frac{16384}{1 \times 5+13} \fallingdotseq 910
$$

$\therefore$ Number of data items $=910 \times 1=910$

```
Storage mode : One of the following three storage modes is
    selectable with the rear FORMAT switch:
    OFF : Stores no data.
    NORM. : Outputs data in the scanning order (from old data)
        while storing.
    MULT. INT.: In the multi-interval mode, outputs data of each
    interval channel group after storing.
Data output mode: One of the following three output modes can be
    selected with the rear OUTPUT switch:
    MANUAL : Permits manual delivery of data to the internal
    printer or an external unit with TR2731's front key
    operation.
    EXT. AUTO.: Automatically outputs data to external units when
    logging stops or when the buffer is full.
    PRT AUTO. : Automatically outputs data to the internal printer
    when logging stops or when the buffer is full.
```


## CAUTIONS

1. The PRT AUTO and EXT. AUTO modes can be cleared after automatic data output is initiated, by operating the LOG DATA and OUTPUT ENABLE keys on the TR2731 front panel, respectively. (Once the mode is cleared, data is discarded.)
2. If the MULT. INT. storage, single user log scan and single interval modes are selected at the same time, no data will be output until the buffer is full or logging stops.

10-3. INSTALLATION PROCEDURE

The TR2730-570 option card can be inserted into a card slot of the TR2731 Mainframe rear panel and secured with two screws. The installation procedure is illustrated in Figure 10-1.
(1) Remove one of four blank panels $A, B, C$, or $D$ from the card slot in which the card is to be inserted.

(2) Place the card on the board guide in the slot and insert it fully into the slot. After plugging the card into the slot connector, secure it with the two screws.


* This photo shows another option card.

Fig. 10-1 Option card installation procedure


Fig. 10-2 TR2730-570 panel description

OUTPUT switch
This switch selects the data output mode. It is activated only if the FORMAT switch is set at the MULT. INT. position.
The MANUAL position of the OUTPUT switch permits manual data output to the internal printer or external unit with TR2731's front key operation. The PRT-AUTO position of the switch permits automatic data output to the internal printer when logging stops or the buffer is full. The EXT. -AUTO position of the switch permits automatic data output to external units when logging stops or the buffer is full.

## (2) FORMAT switch

The FORMAT switch selects storage mode. If no data is to be stored, set this switch to OFF. To output data in the scanning order (from old data) while storing, set it to NORM. To output data for each interval channel group after storing (in the multi-interval mode), set it to MULT. INT.

## 10-5. PRINCIPLES OF OPERATION

10-5-1. Data Buffering

The buffering function of the option card, with which logged data is delivered to output units in the scanning order (FIFO) while storing, is illustrated in Figure 10-3.


Fig. 10-3 TR2730-570 buffering function

This buffering function provides data logging, which is not affected by the speed of the attached output units (internal printer or external output units), until the buffer becomes full.

As shown in Figure $10-4$, if the print time required for statistic operations on the time axis is longer than the basic interval, one or more $\log$ scans will be missed during printout, which results in an measurement error. In sụch a case, correct operation results will be obtained by using the buffering function as it allows data logging irrelevant to printing sequence.
a. When using no data buffer memory

b. When using the data buffer memory


Fig. 10-4 Application example of buffering function I

The data buffering function may also be used for high-speed data logging. If the total amount of logged data is less than the storage capacity of the buffer memory, data can be logged in continuous mode with no regard to the speed of the output unit being used.
a. When using no data buffer memory

b. When using the data buffer memory


Fig. 10-5 Application example of buffering function II

If a data output option card (TR2730-520 BCD Output/External Control or TR2730-560 Serial Data Output option card) is used with the buffer memory function, continuous logging of data exceeding the capacity of the data buffer memory is enabled as shown by the timings in Figure 10-6.


Fig. 10-6 Application example of data buffering function III

In this case, log scan and data output are executed in parallel. If the data output time is equal to or less than $\log$ scan time, the data buffer memory never becomes full. The output time to the buffer memory is approximately $5 \mathrm{~ms} /$ data. The $B C D$ data output time is approximately $10 \mathrm{~ms}+$ external unit's response time per data, which is short enough to output data within the scanning time.

1. In the buffering mode, no channel number is stored in the data buffer memory. Therefore, wrong data will be output if the scan channel is changed during measurement.
2. Data is output in the scanning order in the multi-user log scan mode as well. If more than one output unit is attached via the TR2730-560 Serial Data Output option card, data of individual users are delivered to the units assigned to each user.
3. If continuous $\log$ scan is specified, the data buffer memory outputs measurement start time data at the beginning, and subsequently outputs only measurement data for each scan. If continuous $\log$ scan is not specified, the buffer memory outputs time, label and data for each scan.
4. If output to external unit is specified (OUTPUT ENABLE switch $O N$ ) and the response from the external unit doesn't occur for 10 seconds or more (e.g. the case external unit is not connected or inactivated), time-out is determined and so the data stored in the buffer is erased one by one.
5. If LOG DATA key in the PRINTER section and OUTPUT ENABLE key is set to OFF during data output to internal printer or external unit, data output is suspended until set to ON again. (The data remains alive.)
6. If scanning is stopped once and then restarted, the data in the buffer is erased and the instrument is initialized.
And if the buffer memory is stored fully, scanning can not be restarted until data output is completed. Therefore switch the POWER off and then on again, if required.
7. Single-log scan data is not stored in the buffer memory.

The data rearrangement function is available for the multi-interval or multi-user log scan modes.

In the multi-interval mode, data is printed in the scanning order, and hence data of a certain input group is inconsecutive on printout. In the multi-user $\log$ scan mode, if data of all users are output to only one unit, data of a specific user will also be inconsecutive on printout, mixed with data of other users. In such cases, the data rearrangement function may be effectively used to provide consecutive data for each input group or user for buffer data readability, by temporarily storing logged data until measurement is stopped and rearranging data configuration. In the multi-user log scan mode, the data memory is equally divided into four sections, which are assigned to individual users.
Figure 10-7 shows data output sequences in different output modes selected with the OUTPUT switch on the option card rear panel. As shown in this figure, if MANUAL mode is selected, data output to the internal printer or external units is initiated by key operation on the TR2731 Mainframe. If the AUTO mode is selected, data is automatically delivered to the selected unit (internal printer or external unit) when logging stops or the buffer is full, regardless of the panel switch setting.

## CAUTIONS

1. When the data rearrangement function is used, data is not output until the buffer is full or logging stops. While data is being output, execution of the next scan must be suspended.
2. In the multi-user $\log$ scan mode, if data output (print) for a specific user is started when logging ends or the buffer is full, scan sequences for other users is stopped after the first scan is completed, and is restarted at the intervals specified for individual users when the output operation of the said user is completed.
3. Data output in the scanning order is available by activating data output during data logging with the OUTPUT ENABLE key and LOG DATA or ALM DATA key in the PRINTER section of the TR2731 Mainframe front panel.
4. If, in the multi-user $\log$ scan mode, data of users 1 through 4 are stored in the buffer memory in random order, they are output to one printer after being rearranged into user-independent data arrays.
5. If only two output units are available for four users, data of three users are output to the second output unit.
6. When data is being output because the buffer is full or logging has ended, monitor scan can be executed only if the ALM DATA key in the PRINTER section is deactivated (the lamp in the key goes off.).
7. If data output is stopped by operating the panel key, the remaining data in the buffer is discarded and will not be output when output restart is specified by another panel key operation.
8. If a large portion of data remains in the buffer memory when data output is stopped by panel key operation, it will take up to two minutes to internally process (discard) the remaining data.
9. When data remains in the buffer memory (during data output or when output is disabled after the buffer is full or logging ends), logging cannot be restarted.


Fig. 10-7 Data rearrangement operation sequences using TR2730-570 option card

## SECTION 11 <br> TR2730-580 PULSE COUNTER OPTION CARD

## 11-1. GENERAL

TR2730-580 Pulse Counter option card provides the capability for measuring the outputs of various transducers which convert input events (turning speed, fluid flow, electric power, etc.) into pulse train. It can accept up to four input channels per card. Measurement can be synchronized with log scan in two methods. In the Counter mode, counting is executed at each log interval for a gate time of 0.1 or 1 second. In the Integration mode, input is counted over the entire interval time.

## 11-2. SPECIFICATIONS



The TR2730-580 option card can be inserted into a card slot of the rear panel on the TR2731 Mainframe and secured with two screws. The installation procedure is described below.
(1) Remove one of four blank panels $A, B, C$, or $D$ from the card slot in which the option card is to be inserted.

(2) Specify input type as follows:


Fig. 11-1 Input type specification
a. Contact input -- Set switch S 102 to the ___ position, and switch S101 to the $山$ position.
b. Non-contact input --- Set switch $\operatorname{s102}$ to the $\Perp$ position. If the input signal is TTL compatible, set switch S101 to the山 position; if it is an AC signal, set the switch to the刁 position.
(3) Place the card on the board guide in the slot and insert it fully into the slot. After plugging the card into the slot connector, secure it with the two screws.


* This photo shows another option card.

Fig. 11-2 Option card installation procedure


Fig. 11-3 TR2730-580 panel description
(1) Input connectors

These isolated BNC receptacles (DDK 31-10) accept output signals from various transducers.
(2) Mode select switch

This switch selects measurement modes. The 0.1 s and 1 s positions of this switch select the Counter mode, and the TOTAL position selects the Integration mode.
(3) ON/OFF switch

If this card is not to be used, be sure to set this switch to OFF.

11-5. PRINCIPLES OF OPERATION
11-5-1. Counter Mode Operation

The Counter mode allows for two different gate times: 0.1 and 1 second. A Counter mode operation timing is shown in Figure 11-4. The count input is the pulse train applied to the input connectors (CH. 1 through CH.4). The counter gate is opened in synchronization with $\log \operatorname{scan}$ (shaded parts). A gate open time interval between 0.1 and 1 second can be selected with the MODE switch. Input pulses are counted during this gate open interval. The output of the counter is read by the TR2731 Mainframe as input data and is subjected to internal computation in much the same way as analog input data.


Fig. 11-4 Counter more timing

In the Total mode, input pulses are counted over the log interval up to 9999.

A Total mode timing is shown in Figure 11-5. After input channels are scanned, the total data is read into the TR2731 Mainframe, and the counter is immediately reset and restarted. The total mode may be used for relatively slow input events such as contact pulse inputs. It should be noted, however, the first data obtained in the total mode is not guaranteed, and a TRANS ERR message or indefinite data will be output. If a TRANS ERR message is delivered, the pulse data on the pertinent channel and all subsequent channels will not be output.

If counting continues beyond 9999, the least significant four digits are output. For example, if count data is 10011 , only 0011 is output as data.

Data read in the instrument is subjected to computations in much the same way as analog inputs.

In the Total mode, no pulse integration performs during log scan.


* In the event of TRANS ERR, CAL and analog channel scan takes an additional 2 seconds.

Fig. 11-5 Total mode timing

Input types are selectable with on-board slide switch S102.
The input circuit for contact input is shown in Figure 11-6(a), and that for non-contact input is shown in Figure 11-6(b).
(a) Input circuit for contact signal

BNC

(b) Input circuit for non-contact signal


Fig. 11-6 Input circuits for contact/non-contact input signals

11-7. PROGRAMMING SUPPORT

Channels 501 through 504 are available for programming of the TR2730-580 option card.

11-7-1. Boundary Channel Specification
(Programming contents)

(Programming procedure)

- To specify only channel 1 for group 1. enter as follows:

- To specify channels 2 through 10 for group 2, enter:

- To specify channels 11 through 20 for
group 3, enter:
Call the next group with the $\square^{\text {SET/ NEXT }}$ key.
press


SET/ next Press $\square$


- To specify channels 501 for group 4,
enter:
Call the next group with the $\square^{\text {SET/NEXT }}$
key.
Press 50010

- To check the above programming
results, enter as follows:


11-7-2. Scaling Specification
(Programming contents)

Group number
A: Offset
B: Span

Constants $A$ and $B$ for equation ( $X-A$ )/B can be specified between $\pm 0.0001$ and 99999 .
(Programming procedure)

- To specify $A=0.2$ and $B=0.8$ for $G 01$,
enter as follows:

-o To specify $A=-1.2345$ and $B=1.0$ for

G02, enter as follows:


- To cancel the programming contents for

G03 (perform no scaling operation),
enter as follows:
SET/NEXT
$\underbrace{}_{\text {CLEAR }}$ (Call the next group)


0 To specify $A=-0.1$ and $B=1.5$ for $G 04$, enter as follows:


11-7-3. Unit Specification
(Programming contents)

```
Group number
```

                                    Unit
    Up to 4 alphanumeric characters
(Programming procedure)
follows:


## group

ALPHA

$\square$

- To specify unit $\mathrm{kg} / \mathrm{m}$ for G 02 , enter as
follows:

- To specify unit rpm for G04, enter as
follows:


CAUTION
When using pulse counter inputs, no input range specification is necessary. Measurement is not affected whether a voltage range or thermocouple range is selected. The above unit specification overrides all other unit specifications. If no unit is specified, it appears as space on the printout.

## SECTION 12

TR2730-510 GPIB INTERFACE OPTION CARD

12-1. GENERAL

The TR2730-510 GPIB Interface option card interfaces the TR2731 Computing Data Logger with an instrumentation bus that complies with the IEEE488 Standard. It permits easy construction of a GPIB
instrumentation system configured around a personal computer or other central processing facilities and thus meets more sophisticated requirements involving mass data processing. The TR2730-510 option card also makes the versatile functions of the TR2731 Mainframe available to the system operator with a simpler programming scheme, rather than where an individual scanner, digital instrumentation equipment and printer are used to configure a system. In addition, remote programming via the GPIB interface facility can be performed under the same programming categories as those provided by the TR2731 Mainframe's front panel key functions.

* GPIB: General Purpose Interface Bus

12-2. OUTLINE OF GPIB

The General Purpose Interface Bus transfers data and commands between measuring instruments, controller and other peripheral units of an instrumentation system on 16 signal lines.

Compared with other interface systems, the GPIB offers better expandability, operability, and compatibility with other industry's products in electrical, mechanical and functional aspects. It thus permits construction of simple to highly complex automatic instrumentation system via a single passive bus cable.

In a GPIB system, addresses must be specified for each component on the bus line. Units connected to the bus line may be talkers, listeners, or controllers. Several listeners can be active simultaneously but only one talker can be active at a time. The controller dictates the roll of each of the other components by sending talk or listen addresses on the data lines, to transfer data from a talker to listeners or program measurement parameters from the controller itself to listeners. The eight Data I/O lines are reserved for the transfer of data and other messages in a byte-serial, bit-parallel format. Data and message transfer is asynchronous and bidirectional. The asynchronous nature of the system permits both high-speed and low-speed components to be combined in the same system.
Data and messages transferred between components include measurement information, measurement parameters (program) and commands, all using the ASCII code.
In addition to the eight Data I/O lines, the GPIB also includes three handshake lines to control asynchronous data transfer between components and the other five bus management lines to control data flow on the bus line.


Fig. 12-1 GPIB signal lines

The three handshake lines include the following: Data Valid (DAV) : Indicates validity of data. Not Ready For Data (NRFD): Indicates data receive not ready state. Not Data Accepted (NDAC) : Indicates data receive complete state.

The five bus management lines include the following:
Attention (ATN) : Indicates whether addresses-or-commands are on the data lines, or other information is on the data lines.

Interface Clear (IFC): Clears the interface.
End or Identify (EOI): Used by a component to indicate the end of a multiple-byte transfer sequence.

Service Request (SRQ): Used to indicate to the controller that some component on the bus line wants attention.
Remote Enable (REN): Used to place remotely programmable components in remote mode.

12-3. SPECIFICATIONS
12-3-1. GPIB Specifications

| Standard | $:$ IEEE Standard 488-1978 |
| ---: | :--- |
| Code | $:$ ASCII code |
| Logical levels $:$ | Logic $0:$ HIGH --+2.4 V or more |
|  | Logic $1:$ LOW ---- +0.4 V or less |

Signal line termination: The 16 bus lines are terminated as follows:


Fig. 12-2 Signal line termination

Driver : Open collector
LOW state output: +0.4 V or less, 48 mA
HIGH state output: +2.4 V or more, -5.2 mA
Receiver : Low at +0.6 V or less
High at +2.0 V or more
-Bus cable length: The total length of bus cables must be equal to or less than (the number of on-bus components) $\times 2$ meters, and must not exceed 20 meters.
Address settings: Up to 31 talk/listen addresses can be selected with
the rear ADDRESS switch.
$\begin{aligned} \text { Connector }: & 24-\text { pin GPIB connector } \\ & \text { Amphenor } 57-20240-D 35 A \text { or equivalent }\end{aligned}$


Fig. 12-3 GPIB connector pin assignment

Table 12-1 Interface functions

| Code | Function and Remarks |
| :--- | :--- |
| SH1 | Source handshake |
| AH1 | Acceptor handshake |
| T5 | Basic talker, serial poll, talk-only mode, unaddressed to <br> talk when addressed to listen |
| L4 | Basic listener, unaddressed to listen when addressed to talk |
| SR1 | Service request |
| RL1 | Remote/local switching |
| PP0 | No parallel function available |
| DC1 | Device clear (SDC and DCL commands available.) |
| DT1 | Device trigger (GET command available.) |
| C0 | No controller function available. |
| E1 | Open collector bus driver |

12-3-3. Talker Format (Data Output Format)
(1) Basic format



Secondary arithmetic operation (Defaulted if no computation is specified.)
(1) User No. UNd (in multi-user mode)
(2) Label $\underbrace{\text { LBxxxxxxxx }}$ (Defaulted if not specified.) Header 8 characters (ASCII code)
(3) Time Tuddhhmmss

Header
$\left.\begin{array}{l}\text { dd: Day } \\ \text { hh: Hour } \\ \text { mm: Minute } \\ \text { ss: Second }\end{array}\right\} 2$ digits each
$\left.\begin{array}{l}\text { (4) } \\ \text { (9) }\end{array}\right\}$ Channel $\underbrace{N_{u} t n n}_{\text {Header }}$
t: Terminal number
nn: Channel number
("1" is output for the terminal number if only one TR2741 terminal is used.)


| Header | Contents | Unit |
| :---: | :--- | :---: |
| DV | Measurement range is DC voltage, or is thermo- <br> couple with no linearization. | V |
| TC | Measurement range is thermocouple and platinum <br> RTD, with linearization. | $\mathrm{O}_{\mathrm{C}}$ |
| R | Measurement range is platinum RTD with no <br> linearization. | $\Omega$ |
| BT | Thermocouple sensor fault |  |
| OL | Over range |  |
| ER | Error (transfer error or computation error) |  |
| DL | Digital Input (TR2730-530) data with input unit <br> other than mV, V, or OC. |  |
| FL | Measurement range is contact input. |  |

ᄂ: Space code

Number of data digits and decimal point position
o If output data is seven digits or less, its decimal point position is the same as that of printout data.

## (e.g.) If 12.345 mV in 20 mV range,

DV_0012.345E-3
If $-23.5^{\circ} \mathrm{C}$ in the $\mathrm{T}(\mathrm{CC})$ range,
TC-000023.5E+0

- If the integral part of a computation result is eight
digits or more, eight-digit data with no decimal point is output.
(e.g.) If temperature is $1234.5^{\circ} \mathrm{C}$, scaling coefficients $A=0, B=0.0001$, and $1234.5 / 0.0001=12345000$ in the $R(P R)$ range, TC-1 $2345000 \mathrm{E}+0$
o When TR2730-530 BCD Input option card is used, 8-bit binary data is also output as an 8-digit data with no decimal point.
(e.g.) 8-bit data of 01010011

Dـ01010011E+0
o For contact range input, $1 / 0$ data corresponding to contact ON/OFF is output as follows:
(e.g.) FL_0000001.E+O (ON)

FL_0000000.E+0 (OFF)
o If an error occurs (sensor fault, over range, etc.), data of all zeros is output.
(e.g.) BT」0000000.E+0
(6)

Unit UTXXXX
$(15)$
Header $\longrightarrow 4$ characters (ASCII code)
If no unit is specified, 4 space codes are output.
Lowercase characters are replaced with uppercase characters and symbols are replaced as $\mu \rightarrow U, \Omega \rightarrow R, \square \rightarrow Q$ when output.

Mode $\underbrace{\text { MDd }}$
Header 1 digit

| d | Primary arithmetic operation | Secondary arithmetic operation |
| :---: | :--- | :--- |
| 0 | No computation | - |
| 1 | $\Delta \mathrm{~N}$ (inter-channel difference) | SUB (inter-channel subtraction) |
| 2 | $\Delta I$ (difference from initial value) | MUL (inter-channel multiplication) |
| 3 | $\Delta t$ (difference from the preceding <br> value) | DIV (inter-channel division) |
| 4 | Max (maximum) | Max (maximum of channels) |
| 5 | Min (minimum) | Min (minimum of channels) |
| 6 | Ave (average) | Ave (average of channels) |
| 7 | Ttl (total) | P-P (between maximum and minimum) |
| 8 |  | SD (standard deviation) |
| 9 |  | Lev (deviation) |

(8) Alarm $\underbrace{\text { A d }}$

Header 1 digit

| $d$ | Alarm contents |
| :---: | :--- |
| 0 | Normal |
| 1 | Sensor fault |
| 2 | Over range |
| 3 | Transfer error |
| 4 | Computation error |
| 5 | Upper limit over (H) |
| 6 | Lower limit over (L) |

(13)

Group $\underbrace{\text { Gun }}$
Header $\underbrace{}_{\text {Group number }}$
(17) "," string delimiter

Indicates the end of a string (channel, data, etc.).
(18) CR LF Block delimiter
(EOS)
Normally, CRLF and EOI (output simultaneously with LF) are output as block delimiters. Output of only LF can be specified from the controller.
(2) Default format


A label, units for each channel data, mode, and alarm are omitted from the basic format. The time, channel and data format is identical to the basic format.

## CAUTIONS

1. If the HEADER bit of the rear function switch is set to 0 , the two header characters are omitted from each item in both the basic and default formats.
2. User numbers are output only in the multi-user log scan mode.
3. In the single scan mode, a single scan data is output after time data is output.

12-3-4. Listener Format (Program Code)
(1) Measurement start/stop function, etc.

| Code | Contents | Initial state |
| :---: | :--- | :---: |
| T1 | Log scan start |  |
| T2 | Monitor scan start |  |
| T3 | Single log scan start |  |
|  |  |  |
| C0 | Places the instrument in the power on state. | 0 |
| C1 | Log scan stop | 0 |
| C2 | Monitor scan stop | 0 |
| C3 | Alarm reset |  |

(2) Output function

| Code | Contents | Initial state |
| :---: | :--- | :---: |
| W0 <br> W1 | Log print OFF <br> Log print ON | 0 |
| W2 <br> W3 | Alarm print OFF <br> Alarm print ON | 0 |
| W4 <br> W5 | List output OFF <br> List output ON | 0 |
| W6 | External output OFF <br> W7 | 0 |

(3) $\operatorname{SRQ}$ sendout mode specification

| Code | Contents | Initial state |
| :---: | :--- | :---: |
| SO | Specifies SRQ sendout mode. If addressed to talk when log <br> scan ends the unit sends data out without requesting SRQ. <br> If unaddressed to talk, the unit sends out an SRQ. |  |
| S1 | Specifies no SRQ sendout mode. | 0 |

(4) Data output format specification

| Code | Contents | Initial state |
| :---: | :--- | :---: |
| s2 | Outputs all information which is delivered <br> to the TR2731's internal printer (basic <br> format). | 0 |
| S3 | Outputs only time, channel information and <br> data (default format). |  |

(5) Block delimiter specification upon data output

| Code | Contents | Initial state |
| :---: | :--- | :---: |
| D0 | Outputs a block delimiter of CR LF and EOI <br> (EOI is output simultaneously with LE.). | 0 |
| D1 | Outputs only LF, as a block delimiter. |  |

(6) Parameter specification (see the paragraph for panel programming) a. Scan format

| Header | Contents | Format |
| :---: | :---: | :---: |
| LI | Log interval | LI hour, minute, second, 0 (single interval log) <br> For single interval log, 0 is omittable. <br> LI hour , minute, second , 1 (multi-interval log) <br> CH. , N; CH. , N; ...... <br> LI hour, minute, second, 2 (Variable interval log) <br>  <br> LI $0_{0}^{0}, \underbrace{0}, \underbrace{(e x t e r n a l}$ interval log) <br> [e.g.] "LIO, 2, 0, 1 ; 110, 1 ; 120, 5 ; 130, 10" <br> Multi-mode for two-minutes basic interval <br> 2 minutes (basic X1) interval up to 110 CH . <br> 10 minutes (basic X5) interval up to 120 CH . <br> 20 minutes (basic x 10 ) interval up to 130 CH . |
| SC | Scan channel | ```SC CH. , CH. ; CH. , CH. ...... For a single channel, CH. is defaultable. [e.g.] "SC101, 108; 111, 120 ; 125, 130" between 101CH. and 108CH. between 111CH, and 120CH. between 125CH. and 130CH.``` |


| Header | Contents | Format |
| :---: | :---: | :---: |
| MI | Monitor interval |  |
| FL | Filter |  |
| AT | Auto time |  |
| LB | Label | ```LB x00000000x 8 characters x: Character or symbol, other than the 8 specified characters and header characters, to enclose those 8 characters (Semicolon (;) is not permissible) LB x00000x,1 5 characters o If ", 1"" is inserted, the Index mode will be selected.``` |


| Header | Contents | Format |
| :---: | :---: | :---: |
| CK | Clock | - ", 0" for the Clock mode is omittable. |
| CC | Call channel | CC CH. |
| N | Number specification (multi-user) | $\begin{array}{lll} \hline \text { N Uuser number (e.g.) N1T1 (User } 1, \log \text { start) } \\ & & \text { NOT1 (User } 1-4 \log \text { start) } \end{array}$ |
| G | Number <br> specifica- <br> tion <br> (function group number) | ```G\|}\mp@subsup{|}{\mathrm{ Group number (e.g.) G01FC (specifies a function}}{ group channel for group 1.)``` |

b. Function group

| Header | Contents | Format |
| :---: | :---: | :---: |
| FC | (Function) Group channel | ```FC CH. (e.g.) "FC105;110;115;120;125;130" Function channel Group 1 up to 105CH. Group 2 up to 110CH. Group 3 up to 115CH. Group 4 up to 120CH. Group }5\mathrm{ up to 125CH. Group }6\mathrm{ up to 130CH.``` |
| FR | (Function) Range | $\begin{aligned} & \text { FRR Range }\left\{\begin{array}{l} 0: 20 \mathrm{mV} \\ 1: 200 \mathrm{mV} \\ 2: 2 \mathrm{~V} \\ 3: 20 \mathrm{~V} \end{array}\right. \\ & \text { FR Range }\left\{\begin{array}{l} 4: \mathrm{T}(\mathrm{CC}) \\ 5: \mathrm{J}(\mathrm{IC}) \\ 6: \mathrm{E}(\mathrm{CRC}) \\ 7: \mathrm{K}(\mathrm{CA}) \end{array}\right. \\ & \begin{array}{l} \text { Reference } \\ \text { junction } \\ \text { compensation } \end{array} \begin{cases}0: \text { Internal } \\ 1: & \text { External }\end{cases} \\ & \text { Linearization } \begin{cases}0: & \text { On } \\ 1: & \text { Off }\end{cases} \end{aligned}$ |


| Header | Contents | Format |
| :---: | :---: | :---: |
| FR |  |  |
| FS | (Function) scaling coefficient |  |
| FU | (Function) Unit | ```FU xo000x x: Character or symbol, other than the 4 specified characters and header characters, to enclose 4 characters (e.g.) "FU#RPM#;;;#XX#" Group 1 RPM Group 2 Group 4 xx``` |


| Header | Contents | Format |
| :---: | :---: | :---: |
| FM | (Function) Computation mode |  |

c. Alarm group

| Header | Contents | Format |
| :---: | :---: | :---: |
| AC | (Alarm) <br> Group Channel | $\begin{aligned} & \text { AC } 000, \text { Mode }\left\{\begin{array}{l} 0: \text { Monitor scan } \\ 1: \text { Log scan } \\ 2: \text { Log on monitor scan } \end{array}\right. \end{aligned}$ |
| AH | (Alarm) <br> Upper limit value |  |
| AL | (Alarm) <br> Lower limit value | ```AL =,00000, 00, 0 Up to Same as those for AH 5 digits with a decimal point``` |

d. AUX. function

| Header | Contents | Format |
| :---: | :---: | :---: |
| XF | AUX. function | $X F$ Mode $\left\{\begin{array}{l}\text { 1: SUB (subtraction) } \\ 2: \text { MUL (multiplication) } \\ 3: \text { DIV (division) }\end{array}\right.$ Channel number |
| XM | Alarm comment | XM x000000000000x <br> x: Character or symbol, other than the 12 characters to be specified and header characters, to enclose those 12 characters |

(7) Deletion and erasure of parameters

| Code | Contents |
| :---: | :---: |
| C4 | Deletes only one parameter category out of those specified in advance. <br> (e.g.) To delete the scaling value specified in function group 3, enter as follows: ```G03FSC44``` |
| 20 | Erases all internal programming parameters and initializes the instrument. <br> (Initial value) <br> Log interval <br> Scan channel <br> Monitor interval <br> Clock <br> G6-GEGEGE <br> Call channel <br> 1EIEF <br> Function group channel <br> GE1 <br> Function group range <br> Eig Emb <br> All other categories are left unspecified. <br> The SCAN FORMAT lamp and CLOCK key lamp light on the front panel, and the display shows time beginning from 0 . <br> Note: The function of this code 20 includes that of code CO as well, and initializes all operation modes of the instrument. |

(8) Notes on parameter programming
a. When setting channel numbers, terminal number 1 is omittable. (e.g.) SC101.110;120.125 (CH. 101 to 110 CH .120 to 125) SC1,10;20,25

Spaces preceding programming values are ignored.
b. When setting scaling coefficients or upper/lower limit values, only the necessary number of digits may be specified with the floating point system. (e.g.) Scaling coefficients $A=10.210, B=1.1$ FS10.21.1.1
c. When specifying function items (group channels, ranges, scaling coefficients, units, modes) or alarm items (group channels, upper/lower limit values) consecutively while incrementing the group number, the following programming format can be used:
(e.g.) To specify group 1 and function group channels 105,110,140,210, and 220: G01FC105;110;140;210;220
d. When a function group channel is deleted, the range, scaling coefficients, unit and mode selection in the pertinent group is also deleted (same as the case of panel operation). The group numbers subsequent to the deleted group number are shifted in descending order. When an alarm group channel is deleted, the upper/lower limit setting for the group is deleted, and the subsequent group numbers are shifted in descending order.
(e.g.) To delete group 2: G02FCC4
e. Start/stop for multi-user log scan can be specified as follows:
(e.g.) To start $\log$ scan for user 1: N1T1
(e.g.) To start $\log$ scan for user 2: N2T1
(e.g.) To stop log scan for user 1: N1C1
f. If a header is specified with no Gxx when setting parameters, the group number is 1. If a semicolon (; is used as a delimiter after a header is specified, the group number is incremented by one. Gxx must be specified when specifying groups other than group 1.
g. If an undefined code is specified, D2 of the status byte is set to 1 , although no change in programming occurs. If, at this time, the $S O$ mode is selected, an SRQ is sent to indicate a syntax error.
h. If other parameters are to be consecutively specified when specifying labels, alarm comments or units, they must be delimited with semicolons (;).
(e.g.) G02FU\# o\#; G02FM1, 123
i. When addressing the instrument as a talker to send data, set the External Output switch to ON (by using command W7) in advance.
j. When programming parameters, send out delimiter (CR LF) or following header consecutively after sendout of header or numerical data. If space code or "," is inserted to follow numerical data, preceding numerical character or code is ignored.

False "LIO, 10, 0_SC101, 130"
"LIO, 10, 0,SC101, 130"
Correct "LIO, 10, 0SC101, 130 "

12-3-5. Service Request

When the instrument is placed in the $S 0$ mode, receipt of a measurement end of undefined code causes the instrument to send a service request to the controller. Once the instrument sends a service request, it returns a status byte in response to the SPE command sent from the controller as a result of execution of a serial polling sequence.
(1) Status byte


- Log scan end

The instrument sends an SRQ if it is not addressed as a talker when $\log$ scan ends.

While the SRQ bit of the status byte is reset upon execution of the SPE command, bit D1 remains set until all data is transferred.

- Syntax error

An SRQ is sent if an undefined code is specified or programming parameters exceed a specified range during remote programming.

While the SRQ bit of the status byte is reset upon execution of the SPE command, bit D2 remains set until the instrument is again addressed to listen for remote programming.

- Alarm generation during monitor scan

An SRQ is sent only once if a limit error is generated on a channel during monitor scan.

While the SRQ bit of the status byte is reset upon execution of the SPE command, bit D3 remains set until the next monitor scan is started.

- During log scan or monitor scan

Bits D4 and D5 of the status byte are set to 1 during log scan and monitor scan respectively. However, no change occurs in the SRQ bit status and no service request is sent out.

Status byte read-out procedure
Status byte can be known to the controller by executing serial polling.
a. When using hP model 9825A
$0: r d s(701) \rightarrow S$
$1:$ if bit $(0, s)=0 ;$ gto 10
2: .........
0: Read status byte into valiables $S$.
1: If the least significant bit (bit 0 ) is 0 , it returns to line 10 from interrupt.

2: If not 0 (the end of $\log$ scan), it goes to data readout routine.
b. When using HP model 9845B

10: STATUS 701;S
20: $\operatorname{IF} \operatorname{BIT}(S, O)=0$ THEN 100
30: .......

| $10:$ | Read status byte into valiables |
| ---: | :--- |
|  | S. |
| $20:$ | If the least significant bit |
|  | (bit 0 ) of variables $s$ ( 1 byte $=$ |
|  | 8 bits) is 0, it returns to line |
|  | 100 from interrupt. |
| $30:$ | If not 0 (the end of log scan). |
|  | it goes to data readout routine. |

CAUTION
In the $S 1$ mode (in which no SRQ is sent), the SRQ bit (D7) of the status byte remains at 0 if bit D1, D2 or D3 is set to 1 .

12-3-6. Device Trigger Function

Log scan start can be externally triggered with the GET command. In this case, the function of the GET command is identical to that of program code T1.

12-3-7. Device Clear Function

Execution of the SDC and DCL commands places the instrument in the initial power-on state. In this case, the function of these commands is identical to program code $\mathbf{C O}$.

## 12-4. INSTALLATION PROCEDURE

The TR2730-510 option card can be inserted into a card slot on the rear panel of the TR2731 Mainframe and secured with two screws. Before installation, be sure that the TR2731 Mainframe is powered off.
(1) Remove one of four blank panels $A, B, C$, or $D$ from the rear card slot in which the option card is to be inserted.

(2.) Place the option card on the board guide in the slot and insert it fully into the slot. After plugging the card into the slot connector, secure it with the two screws.


* This photo shows another option card.

Fig. 12-4 Option card installation procedure

12-5-1. System Configuration

The GPIB system consists of multiple components. Note the following precautions for system configuration:
(1) Before connecting components, check the initial status and operation of the TR2731 Mainframe, controller and peripheral units by referring to their own instruction manuals.
(2) Signal cables to instrumentation equipment and the bus cable to the controller or other units should be as short as possible. The length of the bus cable must be within the specification. It must be not more than the number of on-bus components $x 2$ meters and must not exceed 20 meters in total length. The following standard bus cables are available from ADVANTEST:

## Table 12-2 Standard bus cables (option)

| Length | Name |
| :---: | :---: |
| 0.5 m | $408 \mathrm{JE}-1 \mathrm{P5}$ |
| 1 m | $408 \mathrm{JE}-101$ |
| 2 m | $408 \mathrm{JE}-102$ |
| 4 m | $408 \mathrm{JE}-104$ |

(3) Do not stack more than three connectors for bus cable connection. After each cable connector plug is plugged in its mating receptacle, firmly secure them with the plug retention screws.

The bus cable connectors are piggyback type and comprise both male and female connectors, and permit stacked use.
(4) Carefully check the source power, grounding, and programmings (if necessary) of each component before powering them on. Be sure to turn on all the components connected to the bus. If any one of the on-bus components is left off, total system operation will not be guaranteed.


Fig. 12-5 GPIB option card panel description
(1) REMOTE lamp

This lamp comes on if the instrument's functions are programmed from an external controller, not with its front panel keys. When this lamp is on, the front panel key functions are disabled.
(2) LOCAL key

If this key is operated when the instrument is placed in the REMOTE mode (REMOTE lamp on), the instrument is returned to the LOCAL mode and its front panel key functions are enabled. The instrument is initially placed in the LOCAL mode when it is powered on.
(3) SRQ lamp

This lamp indicates that the instrument is in request for service to the controller.
(4) LISTEN lamp

This lamp indicates that the instrument is addressed to listen.
(5) talk lamp

This lamp indicates that the instrument is addressed to talk.
(6) GPIB connector

A 24 -pin connector for IEEE 488 bus. Being piggyback type, this connector permits stacked use of standard bus cables. However, do not stack more than three connectors.
(7) ON/OFF switch

If this option card is not to be used, set this switch to OFF.
(8) Address switch

This switch sets the address of the instrument and controls the header.
It is a 7-bit DIP switch, and up to 31 different addresses are selectable with its five address bits A1 through A5. If Figure 12-6, for example, the address bits are set at 00100, which denotes "4" in decimal notation. In the ASCII code format, talker address $D$ and listener address $\$$ are assigned to the instrument as indicated in Table 12-3, when the address bits are set to 00100 .

If bit 6 of this switch is set to ADDRESSABLE, the instrument can respond to the controller only if an address from the controller agrees with the address bit setting (A1-A5) on the instrument. If bit 6 is set to TALK ONLY, the instrument is unconditionally placed in the TALK ONLY mode regardless of the address setting on the instrument.
If bit 7 of the switch is set to 1 , the instrument sends a two-character header when data is sent out. If bit 7 is set to 0 , the two characters of the header are discarded. An address code table is shown in Table 12-3.


Fig. 12-6 Address switch setting example Note) Letters printed around the address switch have no meanings. Ignore them.
Table 12-3 Address code table

| ASCII code character |  | ADDRESS switch |  |  |  |  | 5-bit decimal code |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LISTEN | talk | A5 | A4 | A3 | A2 | A1 |  |
| SP | @ | 0 | 0 | 0 | 0 | 0 | 0 |
| ! | A | 0 | 0 | 0 | 0 | 1 | 1 |
| n | B | 0 | 0 | 0 | 1 | 0 | 2 |
| \# | C | 0 | 0 | 0 | 1 | 1 | 3 |
| \$ | D | 0 | 0 | 1 | 0 | 0 | 4 |
| $\%$ | E | 0 | 0 | 1 | 0 | 1 | 5 |
| \& | F | 0 | 0 | 1 | 1 | 0 | 6 |
| 1 | G | 0 | 0 | 1 | 1 | 1 | 7 |
| $($ | H | 0 | 1 | 0 | 0 | 0 | 8 |
| ) | I | 0 | 1 | 0 | 0 | 1 | 9 |
| * | J | 0 | 1 | 0 | 1 | 0 | 10 |
| + | K | 0 | 1 | 0 | 1 | 1 | 11 |
| , | L | 0 | 1 | 1 | 0 | 0 | 12 |
| - | M | 0 | 1 | 1 | 0 | 1 | 13 |
| - | N | 0 | 1 | 1 | 1 | 0 | 14 |
| 1 | 0 | 0 | 1 | 1 | 1 | 1 | 15 |
| 0 | P | 1 | 0 | 0 | 0 | 0 | 16 |
| 1 | Q | 1 | 0 | 0 | 0 | 1 | 17 |
| 2 | R | 1 | 0 | 0 | 1 | 0 | 18 |
| 3 | S | 1 | 0 | 0 | 1 | 1 | 19 |
| 4 | T | 1 | 0 | 1 | 0 | 0 | 20 |
| 5 | U | 1 | 0 | 1 | 0 | 1 | 21 |
| 6 | V | 1 | 0 | 1 | 1 | 0 | 22 |
| 7 | W | 1 | 0 | 1 | 1 | 1 | 23 |
| 8 | X | 1 | 1 | 0 | 0 | 0 | 24 |
| 9 | Y | 1 | 1 | 0 | 0 | 1 | 25 |
| : | Z | 1 | 1 | 0 | 1 | 0 | 26 |
| ; | [ | 1 | 1 | 0 | 1 | 1 | 27 |
| < | \} | 1 | 1 | 1 | 0 | 0 | 28 |
| = | ] | 1 | 1 | 1 | 0 | 1 | 29 |
| > | $\sim$ | 1 | 1 | 1 | 1 | 0 | 30 |

(1) Notes on Only Mode operations

When the instrument is to be operated in the only mode, be sure to set bit 6 of the rear Address switch to ONLY and place the partner component on the bus line also in the Only mode. In the Only mode, however, the controller function must be disabled.

If the controller is used in the Only mode, normal system operation will not be guaranteed as all commands from the controller are ignored by other components.
(2) Power intermission

If a power intermission (including power fluctuation) occurs during operation of the GPIB system including the TR2731, the system is usually initialized to the power-on state when the power is recovered. Care should be exercised for power intermission processing for other system components.
(3) Controller interrupt to data transfer between components The GPIB system permits data transfer between system components other than the controller. If the controller is to interrupt data transfer between system components (handshake) to switch into the serial poll mode or to add a new listener, data transfer is overriden by the controller interrupt. After the interrupt sequence is completed, the system resume data transfer. When data transfer is to be performed between system components with no intervention of the controller, programming should be made so that the controller can recognize the data transfer status.
(4) Notes on Address switch setting modification during operation If the Address switch setting on the instrument is modified during operation, the new address is recognized by the controller immediately after the switch setting is modified. This principle is also applied to the ONLY-ADDRESSABLE and HEADER bits of the Address switch as well as the address bits.
(5) If $\log$ scan is started when the instrument is attached to an external controller with the ON/OFF switch on the TR2730-510 option card left at the ON position, GPIB data output is performed for every scan, and then the instrument proceeds with the next operation after the time-out interval of 10 seconds expires.
(6) When the instrument is powered on or receives each command, it is placed in the following status:

| Command | Talker <br> (with <br> lamp) | Listener (with lamp) | SRQ <br> (with lamp) | Status | Send data | Panel setup | Display |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| POWER GM | Clear | Clear | Clear | Clear | Clear | Initialization | Time |
| IFC | Clear | Clear |  | - | $1$ |  | - |
| DCL, SDC or CO |  |  | Clear | Clear | Clear | Initialization | Time |
| GET or T 1 |  |  |  | Clears the <br> "Send Data <br> Present" <br> bit. | Clear | LOG START lamp turned on. |  |
| Addressed to talk to the instrument | Set | Clear |  |  |  |  |  |
| Not addressed to talk | Clear |  |  |  |  |  |  |
| Addressed to listen to the instrument | Clear | Set |  | Clears the Syntax error bit. |  |  |  |
| Not addressed to listen |  | Clear |  |  |  |  |  |
| Serial polling |  |  | Clear | Clears the SRQ bit. |  |  |  |

Note: Slash (/) indicates no status change.
DCL: Device Clear
SDC: Selected Device Clear
GET: Group Execute Trigger

(1) Programming example (using the HP-9825A for controller)
a.



Log interval: 10 minutes 0 second in single interval Scan channel: CHs.1-10

Group channel:
CH. 10

Each of the above items is sequentially programmed from the controller. The programming operation for each item actually occurs when another header or delimiter (;) is encountered. If a parameter with two or more groups is delimited by a semicolon (i), the programming sequence proceeds with the next item (group).
b.


Function group channel: CH. 20

If the So mode is selected, the instrument sends out a service request when MI75, 0 is programmed. In this case, the scan channels and function group channel are normally programmed, but the monitor interval (MI) programming is ignored.
(2) Service request sequence
a. The following service request sequence is initiated when log scan (SO mode) ends:
o When serial polling is to be made


- When no serial polling is to be made


Note: Each status byte includes $\log$ scan busy (D4=1) and monitor scan busy ( $\mathrm{D} 5=1$ ) information.
b. The following service request sequence is initiated when an alarm is generated during monitor scan:

- When serial polling is to be made

Monitor scan (error continued or returned to normal)

o When no serial polling is to be made

c. The following service request sequence is initiated when a syntax error is generated:

(1) In the following programming example, channels 1 through 40 are measured with the thermocouple $T(C C)$ range, channels 41 through 50 with the DC voltage range ( 20 V ), and channels 51 through 60 with the DC voltage range ( 20 mV ) all at 10 -minute intervals, and measurement data is transferred to the controller. Also channels 41 through 50 are subjected to scaling operation to convert input voltages of 1 to 5 V into output percentage of 0 to 100\%. (The values are directly defined in this programming example.)



All parameters are now programmed.



Data may be read while it is monitored with status bytes or while an interrupt by $\operatorname{SRQ}$ is serviced each time.


The basic parameter programming is shown below.

Programming example using
the HP Model 9825A as a controller


## Program description

0: Initial reset and parameter file total erase. Specify $S 0$ for $S R Q$ sendout mode.

1: Set the log interval to 10 minutes.

Specify channels 101 through 160 as scan channels.

2: Set the monitor interval to 10 minutes and specify the selective scan mode for channels 1, 11, 21, 31, 41, and 51 (digit and offset specifications are typical.).

3: Specify function group channels: CH .40 for group 1, CH .50 for group 2, CH. 60 for group 3

4: Specify ranges:
$T(C C)$ for group 1, 20 V for
group 2, 20 mV for group 3
5: Specify scaling coefficients for group 2:
$A=1, B=0.04$
6: Specify unit of for group 2.
7: Specify the simplified data output format and start log scan and monitor scan.

```
(2) In the following example, the range programming for group 2
    (Channels 41 through 50) is modified into 2 V, the scaling
    operation is omitted, and the unit is changed into KG:
```




G02 FU \#KG\#
Group 2
 Specify the KG unit

Programming hereafter is the same as example (1).
Note: Specify group numbers for function and alarm parameters when specifying a header. Use a semicolon (;) as a delimiter to sequentially advance the group number in the same parameter item. Specifying two consecutive semicolons (;;) will advance two group numbers.

Programming example using the HP Model 9825A as a controller

(3) Data readout procedure

The following two procedures are available to read data.
a. Data read is executed by the SRQ signal from he TR2731 at the end of measurement.
b. Data sent out after measurement is read when the TR2731 is addressed to talk all the time and so controller is ready to receive inputs.

Cause of interrupt is analyzed and processed by the procedures described in item 12-3-5 (c), for a.

Sendout data is read by addressing the TR2731 to talk, for both a. and $b$. Note the data sendout format especially for the delimiter's validity.
As described in item 12-3-3. Talker Format, the delimiter for the serial data such as time, channel and data is executed by "," (string delimiter) or "CR LF" (block delimiter), and is output at the end of a single scan.
Note that some controller requires definition of input data delimiter is advance, or specification of input command.

Example using the HP model 9825A red701, A In this format, "," and "CR LF" are valid.

Example using the HP model 9845B ENTER 701 ; A In this format, "LF" is identified as delimiter. ENTER 701 USING "\#,F";A In this format, "," is identified as delimiter.

For details, refer to each controller's instruction manual.
(4). In the following example, measurement interval is specified 10 minutes, channels 1 through 40 are measured with the thermocouple range $T(C C)$, and data is read into the controller.
a. When using no SRQ
i) Example using the HP Model 9825A


Program description

0: Defines data area.
1: Defines the output format.
2: Erase TR2731's parameters.
3: Specify numerical format (with no decimal places).

4: S1 (no SRQ sent) S3 (data format, default mode) LIO, 10, 0 (log interval 10 minutes)
SC1, 40, (scan channels 1 through 40)

5: FC40 (group channel CH.40)
FR4 (range $T(C C)$ )
CK (clock mode)
W7 (external output ON)
6: Log start
7: Time data readout
8: Data read loop for channels 1 through 40
9: Channel number readout
10: Specify numerical format (with one decimal place).
11 : Data readout
12: Output data to 9825A in output format 1 .

13: Proceed with next data readout.
14: Specify UNTALK command.
15: Wait for the next scan data.
ii) Example using the HP Model 9845B as a controller

```
10 DIM B (40, z)
20 CLEAR ?
30 OUTPUT 701:"20" !FARAMETER ALL CLEAR
40 DINTPUT FQ1;"E1SSLIE,10,GSC1,40" ISRQ,SHORT FORMRT
50 !
60 OUTPUT 701;"FC4EFR4CKW7" !GROUPE1 40CH,CLCT),CLDCK
T0 OUTPUT 7Q1:"T1" !LDG START
SO EHTER 701 USIHG "#,F":A !READ TIME IATA
70 PRINT A
10日 FOR N=1 TO 39 IFIRST CH TO LAST CH-1
110 ENTER TO1 USING "#,F,F";B(H,1),E(H,2)!READ EH HO. & DHTA
120 PRINT B(N,1),B(N,2)
130 NEXT N
14日 ENTER TQ1;B(4Q,1),B(40,2) !FEAD LAST EH & ER LF
150 PRINT B(40,1),B(40,2)
160 SENDBUS 7;95 !"INTALK COIE"
170 GOTO EO !READ NEXT SCHN DATA
```


## Program description

10: Defines the data area.
20: Clear the GPIB bus line interface.
30: Erase TR2731's parameters.
40: S1 (no SRQ sentout)
S3 (simplified output format)
LI (log interval 10 minutes)
SC (scan channels 1 through 40)
60: FC40 (group channel 40)
FR4 (Range $T(C C)$ )
CK (clock mode)
W7 (external output ON)
70: T1 (log start)
80: Read out time data and specify a character or symbol other than numeric characters as a delimiter.

90: Print time data.

100: Channel number and measurement data readout loop (to the channel just preceding the last channel)

Note: The last channel is excluded from the loop because of the difference in delimiter format.

110: Read channels and data, and specify a character or symbol other than numeric characters as a delimiter (\#, F, F). Note: The default assumption for the ENTER statement uses an LF code as a delimiter. Therefore, use the USING statement to specify a comma (,) as a delimiter.

120: Print channel and its data.
130: Next data
140: Read out the last channel number and its data. Note: LF must be read, as $C R$ and LF is output as delimiter.

150: Print the last channel number and its data.
160 : UNTALK command
170: Wait for the next scan data readout.
b. When using SRQ
i) Example using the HP Model 9825A


## Program description

0: Defines the data area.
1: Defines the output format.
2: Clear the GPIB bus line interface.

3: Erase TR2731's parameters and initialize it.

4: Define the top address of the interrupt service routine.

5: Define the numerical format (with no decimal places)

6: S0 (SRQ sendout mode)
S3 (Simplified data output format)

LIO, 10, 0 (log interval 10 minutes)

SC1, 40 (scan channels 1 through 40)

7: FC40 (function group channels up to CH.40)

FR4 (range T(CC)), internal
compensation and linearization
ON)
CK (clock mode)
W7 (external output ON)
8: Log start
9: Enable SRQ interrupt.
10: Wait for interrupt.
11: Start interrupt service routine.
Read out status byte and go to
line 14.
12: Enable SRQ interrupt.
13: Return from the interrupt service routine.

14: Read out one data (time data).

| $15:$ | Readout loop for channels 1 |
| ---: | :--- |
|  | through 40 |
| $16:$ | Read out one data (channel |
|  | number). |
| $17:$ | Defines the numerical character |
|  | format (with one digit below |
|  | decimal point) |
| $18:$ | Read out one data (measurement |
|  | data) |
| $19:$ | Output data to $9825 A$ in output |
|  | format 1 |
| $20:$ | Read the next data |
| $21:$ | Specify unTALK |
| $22:$ | End of interrupt service |
|  | routine, go to line 12 |

ii) Example using the HP Model 9845B

```
10 DIM B (40, 2)
20 CLEAR ?
30 DUTPUT 701;"20" !PARAMETER ALL CLEAR
40 ON INT #T FOSUB Srq !SRQ-->"Erq"RUIJTINE
50 OUTPUT 701:"SQS3LIQ,10,0SC1,40" !SRQ,SHORT FORMAT
50 !
70 OUTPUT 701;"FC4OFR4CKH7" !GROUPE1 4BCH,CC(T),ELDCK
SQ OUTPUT 701;"T1"
90 CONTROL MASK 7;123
100 CRRD ENABLE ?
110 GOTO 110
120 Srg:STATUS 7日1:S IREAD STATUS BYTE
130 ENTER 701 USING "#,F";A !RERD TIME DHTA
140 PRINT A
150 FOR N=1 TO 37 IFIFST CH TO LAST CH-1
150 ENTER TO1 USIHG "#,F,F";B(N,1),E(N,2)!READ CH NO. & DATA
170 PRINT B(N,1),B(N,2)
180 NEXT N
190 ENTER 701;B(40,1),B(40,2) !FERD LAST CH & CR LF
200 PRINT B (40,1), B(40,2)
210 SENDBUS 7;95
220 CARD ENABLE ?
230 RETURN
```

Program description
10: Defines the data area.
20: Clear the GPIB bus line interface.
30: Erase TR2731's parameters.
40: Interrupt service routine address "Srq"
50: SO (SRQ sendout mode)
S3 (simplified data output format)
LIO, 10, 0 (log interval 10 minutes)
SC1, 40 (scan channels 1 through 40)
70: FC40 (group channels up to CH .40 )
FR4 (range $T(C C)$ )
CK (clock mode)
W7 (external output ON)
80: T1 (log start)
90: Specify an SRQ mask bit.
100: Enable interrupt.
110: Wait for interrupt.
120: Interrupt service routine.
130: Read out time data.
140: Print time data.
150: Readout loop for channel numbers and their data.
160: Read out channel numbers and data.
170: Print channels numbers and data.
180: Next data
190: Read out the last data.
200: Print the last data.
210: UNTALK command
220: Enable interrupt.
230 : End of interrupt service routine.
(5) By key command from controller, log scan interval, scan channel and measuring range for the TR2731 are input to specify via GPIB. After completion of programming, log scan is started by using SRQ interrupt to read measurement to the controller. (Procedures using variables for parameter programming to TR2731.)
i) Outlined flow-chart




## Program description (9825A)

6: Data area definition
10: Format 5 Data display for 20 mV range 00.000 mV
11: Format 6 Data display for 200 mV range 000.00 mV
12: Format 7 Data display for 2 V range 0.0000 V
13: Format 8 Data display for 20 V range 00.000 V
14: Format 1 Data display for temperature range $0000.0^{\prime} \mathrm{C}$
15: Format 2 Format for parameter programming
S0 (SRQ sendout mode), S3 (simplified format)
LI (log interval)
16: Format 3 Format for parameter programming SC (scan channel)

17: Format 4 Format for parameter programming FC (function channel)

FR (function range)
CK (clock mode)
W7 (external output enable)
T1 (log start)

21: Interface clear
22: TR2731 parameter all-clear, initial settings
23: Specification of program to be executed at the generation of SRQ interrupt

28-30: Log interval input
31. 32: Scan channel input

33: Measuring range input
34: Number of digits specification for the log interval display
35: Log interval display
40: Log interval specification
41: Scan channel specification
42: Function channel and range specification
43: SRQ interrupt enable
45: Other processing program (wait for interrupt)
47: Status byte readout
Determines if log scan end interrupt or not
52: Time data readout
53: Loop for channel number and data readout
54: Specifies number of decimals in the data
55: Channel number readout
56: Data readout
57-61: Display format specification by measuring range
62-66: Specified format display for each measuring range
67: Readout loop for the next data
69: UNTALK command (unaddressed to talk)
70: Interrupt enable
71: Returns from interrupt routine



```
Program description (9845B)
90: Data area description
130: Time display format specification
140: Data display format for 20 mV range 00.000mV
150: Data display format for 200 mV range 000.00mV
160: Data display format for 2 V range 0.0000V
170: Data display format for 20 V range 00.000V
180: Data display format for temperature range 0000.0'C
220: Format for parameter programming
    SO (SRQ sendout format), S3 (simplified format)
    L1 (log interval)
230: Format for parameter programming
    SC (scan channel)
240: Format for parameter programming
    FC (function channel)
    FR (function range)
    CK (clock mode)
    W7 (external output enable)
    T1 (log start)
280: Interface clear
290: Device clear
300: TR2731 parameter all clear, initial settings
320: Specification of program to be executed at the generation
    of SRQ interrupt
370: Log interval input
380: Scan channel input
390: Measuring range input
440: Log interval specification
450: Scan channel specification
460: Function channel and range specification
500: SRQ interrupt mask reset
510: SRQ interrupt enable
560: Other processing program (wait for interrupt)
610: Status byte readout
620: Determines if log scan end interrupt or not
660: Time data readout
670: Time data display
```

```
690: Loop for channel number and data readout
700: Reads channel number and data in free format and
    identifies "," as delimiter
710, 720: Variables replacement
730-770: Display format specification by measuring range
780-860: Specified format display for each measuring range
870: Determines if last channel or not
880: Readout loop for the next data
890: Specifies N as the last channel data number
900: Identifies "CR LF" as delimiter to read channel number and
    data in the last channel
910: Go to line 710
940: UNTALK command (unaddressed to talk)
950: Interrupt enable
960: Returns from interrupt routine
```


## ADVANTEST. <br> ADVANTEST CORPORATION

INSTRUCTION
MANUAL
TR2731/2741

## Computing Data Logger VOL 2

This product has been discontinued. The Operation Manual is provided by ADC Corporation under the agreement with Advantest Corporation.

> Before reselling to other corporations or re-exporting to other countries, you are required to obtain permission from both the Japanese Government under its Export Control Act and the U.S. Government under its Export Control Law.

13-1. GENERAL

This section summarizes troubleshooting procedures for TR2731 and TR2741 in flow-chart form. After completing any repairs, always calibrate and check the performance of the unit before using it again. Note that part numbers and symbols used in this section are the same as those imprinted or marked in the circuit diagrams and boards.

## 13-2. PRELIMINARY PREPARATIONS

The measuring instruments and apparatus required for troubleshooting purposes are listed below. Use the instruments listed in Table 13-1, or those of equivalent or better performance capacity.

Table 13-1 Measuring instruments required for troubleshooting

| Measuring <br> instrument | Performance rating | Recommended <br> equipment | Remarks |
| :--- | :--- | :--- | :--- |
| Oscillo- <br> scope | Frequency: DC to 30 MHz <br> Sensitivity: $10 \mathrm{mV} / \mathrm{div}$. or better |  |  |
| Digital <br> multimeter | DC voltage: 0 to $\pm 300.0 \mathrm{~V}$ <br> Resistance: 0 to $1 \mathrm{M} \Omega$ | TR6824 <br> (ADVANTEST) | TR6141 <br> (ADVANTEST) |
| DC voltage <br> standard | DC voltage: 0 to $\pm 50.00 \mathrm{~V}$ | To be used for |  |
| Frequency <br> generator | Frequency: 1 to 100 kHz <br> Waveform: Sine wave or square wave |  |  |

Table 13-2 Other apparatus required for troubleshooting

| Article | Stock No. | Remarks |
| :--- | :--- | :--- |
| BNC-BNC cable | MI-02 | To be used for TR2730-580 |
| Clip type cord |  |  |
| Adjustment board | BLC-010540 |  |

(1) This troubleshooting section has been intended for use by electronic engineers and personnel with experience in repairing measuring instruments. An adequate knowledge of electric circuits is necessary.
(2) The AC power supply used must be within the specified voltage range and the specified frequency range.
(3) The power cord plug is a three-prong plug, the round prong in the center is for grounding. When this plug is connected to the AC mains receptacle via a two-prong adapter, always ensure that either the adaptor ground lead or the GND terminal on the rear panel of the unit is connected to an external earth ground. (See Figure 1-3).
(4) Conduct the troubleshooting in a place free of dust, vibration, and noise.
(5) Whenever the interior of the unit is to be examined, always make sure that the POWER switch is set to OFF. (The TR2741 POWER switch is located on the rear panel). The POWER switch must also be set to OFF whenever extracting or inserting circuit boards.
(6) When measuring with an oscilloscope or digital voltmeter, be particularly careful to prevent shorting with lead wires of the parts or neighboring terminals, etc.
(7) When using a soldering iron to replace defective parts on a circuit board, perform the soldering as quickly as possible, and use an iron rated at 20 W to 30 W . If a hot soldering iron is applied to a circuit component (particularly semiconductors) for long, the heat may cause damage to that part and/or the printed pattern. The soldering iron should also be a low-leakage type with the iron tip connected to ground via a resistance from $100 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$.
(8) When replacing parts, use parts of equal performance ratings as indicated in the parts list at the end of this manual. Parts marked by an asterisk (*) are dedicated. Contact your nearest ADVANTEST representative for further details.

Parts marked by a \# must be protected from damage by static electricity in the following ways.
o Handle these parts as infrequently as possible.
o Store the parts by wrapping in material of good conductivity to prevent accumulation of static electricity, or enclose in a sponge material also of good conductivity.
o Make sure that the personnel handing such parts do not wear clothing made of synthetic fiber, and that any residual static electricity is discharged before starting operations.
o When handling ICs, do not touch the pins directly by hand.

- Never slide ICs along any surface, no matter what kind of material it is.
(10) Reread section 3-11 "Maintenance and Check" to make sure that the trouble is not due to an operational error. After confirming the defect, proceed to correct the problem as directed by flowchart.
(11) When checking internal circuits, be very careful not to short the printed pattern or other circuit components apart from those specified. When connecting circuits by clip or other similar means, check that the tip of the clip does not overlap onto another circuit. Accidental shorting can result in desctruction of circuit components.
(12) Unless otherwise specified, use the circuit ground as the reference voltage when measuring voltages, connecting the voltmeter "-" or "LOW" side to ground.
(13) Although the troubleshooting flowcharts mainly stipulate ICs, transistors, and other semiconductor elements as the defective parts, also check resistors and other components connected in the vicinity of the specified part.
(14) Also check the input/output logic of semiconductors before replacing such components. Defects in other circuit components can sometimes appear to be due to the semiconductor.

When the unit fails to operate as described in the operation manual, it can be assumed that a failure has occurred.

Major defects include:
o Scanning failure,

- Data discrepancy (in respect to expected value),
- Printing failure, and
o Parameter setting failure.
First check that there has been no operational error by referring back to section 3-11-4 "Problem Determination".

Then determine whether the failure has occurred in the TR2731 or the TR2741, and follow the respective troubleshooting procedures accordingly.


Fig. 13-1 Failure diagnosis flowchart


Fig. 13-2 RUN lamp

13-5. PRINCIPLES OF THE TR2741 SENSOR TERMINAL OPERATION
13-5-1. Operation of Component Parts

See Figure 13-3 for an outline of the TR2741 block diagram.

Fig. 13-3 TR2741 block diagram

TC scanner
The TC scanner consists of a set of input switching relays, and a terminal board temperature measuring circuit for internal reference junction compensation purposes.

With 40 channels divided into two groups, the input scanner executes switching operations by 20 relays. The relays are connected in a matrix form.


Fig. 13-4 Relay connection diagram

In the internal reference junction compensation circuit (see Figure 13-5), changes in resistance due to the temperature of the platinum sensor (platinum resistive temperature detector) are converted to changes in voltages. The output voltage is measured three times under the following conditions, the results linearized, and the terminal board temperature determined.
(1) K1: OFF, K2: 1 Amplifier offset measurement ...... Voff
(2) K1: ON, K2: 1 Output voltage for fixed resistance (100 $\Omega$ ) .................. VR
(3) K1: ON, K2: 2 Output voltage for platinum
sensor .................................... VPt
$\frac{\text { VPt - Voff }}{\text { VR - Voff }}$ is calculated, and the results linearized.
The above measurement is to be conducted for each calibration and each terminal board.


Fig. 13-5 Internal reference junction compensation circuit
(2) Platinum scanner

The platinum scanner consists of an input switching relay group and a constant current circuit for resistance measurements by platinum sensor. The input scanner consists of one channel per single package relay with four make contacts. This scanner handles up to 20 channels, and is driven in the same way as the TC scanner.
Since the constant current circuit (see Figure 13-6) is given different values when used, long term stability is not required. These values are given each time the scanner is calibrated.


Fig. 13-6 Constant current circuit for platinum sensor measurements

The scanner is calibrated at two points $-0 \Omega$ and $260 \Omega(180 \Omega+$ $80 \Omega$ ) - in the 3 -wire $R T D$ and 4-wire RTD ranges, and at two points - $80 \Omega$ and $180 \Omega$ - in the 4-wire RTD high resolution range. For this reason, the scanner includes two high-accuracy reference resistances, $80 \Omega$ and $180 \Omega$.
(3) Input amplifier

The input amplifier is a high-impedance non-inverting amplifier where the gain is varied according to the measuring range. The circuit is outlined in Figure 13-7.


Fig. 13-7 Input amplifier block diagram

The gain for each measuring range is listed in the following table. Gain error is of the order of $2 \%$ to $3 \%$.

| Measuring range |  | Gain |
| :---: | :---: | :---: |
| Voltage range | $\begin{aligned} & 20 \mathrm{~V}, 2 \mathrm{~V} \\ & 200 \mathrm{mV} \\ & 20 \mathrm{mV} \end{aligned}$ | $\begin{array}{ll} \mathbf{x} & 1 \\ \mathbf{x} & 10 \\ \mathbf{x} & 100 \end{array}$ |
| Thermocouple range | $\begin{array}{llll} \text { T, } & \text { J, } & \text { E, } & \text { S, } \\ S, & R, & 12.8 \end{array}$ | $\begin{array}{ll} \mathrm{x} & 48 \\ \times \quad 200 \end{array}$ |
| Platinum range | 3-wire, 4-wire <br> 4-wire high resolution | $\begin{aligned} & \text { x } 10 \\ & \text { x } 40+\text { offset } \end{aligned}$ |

(4) Dual slope integration $A / D$ converter

This uni-polar $A / D$ converter has an input range from -10 V to 0 V . The count is about 240,000 at 50 Hz for an input of -10 V , and about 200,000 at 60 Hz . Reference voltage is +10 V . The initial integration time is $20 \mathrm{~ms}(50 \mathrm{~Hz})$ and 16.66 ms $(60 \mathrm{~Hz})$, and the clock frequency is 12 MHz .


Fig. 13-8 A/D converter block diagram

After switch $S l$ is switched on for the primary integration time ( 20 ms at 50 Hz , and 16.66 ms at 60 Hz ), switch S 2 is switched on, followed by switch Sl being switched off again. Comparator A3 is activated when the A2 output drops below a level of about 0 V , resulting in the output of an $A / D$ conversion end signal.

S3 is an auto-zero switch which determines the amount of charge on the integrating capacitor at the start of integration. The switch remains on when no integration is executed.
(5) Offset amplifier

Since the A/D converter is a uni-polar type, an offset signal is applied to achieve overall bipolarity. In other words, when the input is 0 V in the voltage range, the offset amplifier output is set to about $1 / 2$ full scale of the $A / D$ converter (about 5 V ), and the gain is doubled.

With an input of 0 V , the amplifier output is as follows:

- Voltage range ................................... Approx. -5 V
o Thermocouple T,J,E,K .......................... Approx. -1.8 V
- Thermocouple S,R,B,Pt ranges ............ Approx. -0.86 V

See Figure 13-9 for the circuit block diagram.


Fig. 13-9 Offset amplifier block diagram
(6) Reference voltage generator

Reference voltage are generated for voltage range and temperature range calibrations. The voltages generated include - full scale, or 0 , and + full scale, and values are given to the analog system (from input amplifier to $A / D$ converter). $\pm 2 \mathrm{~V}, \pm 200 \mathrm{mV}, \pm 20 \mathrm{mV}$, and +80 mV voltages are generated by dividing the +10 V voltage. The relevant block diagram is outlined in Figure 13-10.


Fig. 13-10 Reference voltage generator block diagram
(7) CPU

This microprocessor controller regulates all relays, the analog system, and serial I/O. See Figure 13-11 for the relevant block diagram.

R/W controller

Data bus



Fig. 13-12 A/D conversion control logic block diagram


Fig. 13-13 A/D conversion control logic timing chart
(10) A/D conversion parameter setting logic Data related to input amplifier and offset amplifier gain is received from the CPU, latched, and then used to activate switches. See Figure 13-14 for the block diagram.


Fig. 13-14 A/D conversion parameter setting logic
(11) Relay drive control

Data for switching certain relays on is received from the CPU,
latched, and relevant currents then passed to the relay matrix.


Fig. 13-15 Relay drive control block diagram

## (12) Serial I/O control

Only the data required by the terminal is selected from the serial data sent from the TR2731, this being delivered to the CPU after reception.

The serial I/O is completely isolated from the TR2731 side by photocoupler.


Fig. 13-16 Serial $1 / O$ control block diagram
(13) Power supply

The $+15 \mathrm{~V},-15 \mathrm{~V},+5 \mathrm{~V}$, and +20 V power supplies required by the TR2741 are generated from the 32 V power supply from the TR2731. The required isolation between the TR2731 and TR2741 is achieved by using a DC/DC converter.


Fig. 13-17 Power supply block diagram

## 13-6. TR2741 TROUBLESHOOTING

13-6-1. Flowchart Summary

The general troubleshooting procedures are summarized in the following flowchart.


Proceed according to the following check priority.


After completing the check, also check the jumper and switch settings indicated in Figure 14-7.

13-6-2. Detailed Flowchart

The detailed troubleshooting flowcharts are provided below.




Note 1: Since IC54, IC58, and IC64 use sockets, replace them with spares (if available) before starting the test.
Note 2: The program to check the integrated ROM/RAM is activated when the power is switched on. This test is for checking the ROM.


Fig. 2a

Note 3: This test is for checking the RAM
Note 4: The lamp does not come on when the serial $1 / 0$ is not activated. It is used to indicate that auto-calibration is being executed.

Note 5: : Defects in the CPU (IC54) or ROM (IC58 and IC64) can result in completely unexpected operations. The block tests referred to in notes 2 and 3 are used only to check for partial defects in the CPU and ROM
Note 6: Pin 40 of IC54 is the master reset line.
Note 7: S531 is the manual reset switch. The on/off status is indicated below.


Note 8: The CPU clock is 4 MHz with a $2: 1$ duty cycle
Note 9: The test point TEST is located on the lower left side of IC65
Note 10: Since the data bus reads the NOP command under all circumstances, the CPU simply increments the addres
Note 11: The R-ADR is located on the left hand side of ic54, and can be disconnected by pulling the blue socket up.
Wote 12: Check the ic pins by oscilloscope
Note 13: Start the program for output of 0 to FF data for all devices
Note 14: 0 s may be used as the trigger


CHART 3 Serial I/O


| $\substack{\text { eforms at } \\ \text { thru } 12 \text { of } \\ \text { C } 30 \text { of }}$ |
| :---: |

$$
] \mathrm{s}
$$

See Figure 3-f.


Check IC35 and IC36.


Note 1: Prevent signals from being sent from the TR2731.
Note 2: The UART clock is obtained by dividing 1 MHz by three in tC41.
Note 3: Output of serial data is obtained by the serial $1 / \mathrm{O}$ check program, a loop is form ed by reconnecting jumper TEST3, and the output data is compared with the input data. The RUN lamp comes on if a difference is detected.
Note 4: SIO+ and SIO- are located on the upper left side of IC1. Since SIO+ and SIO are isolated from GND on the printed circuit board, connect the synchro probe in between these terminals.

Note 5: TBRE is the busy check for UART output. Failure to execute this check properly may result in output of only one item of data when S 531 is switched off, and this being followed by no further output.
Note 6: Due to the narrow pulse width, the oscilloscope must be operated carefully to avoid loosing sight of the puises.
Note 7: RBR1 thru RBR8 form a binary counter
Note 8: Reset the TR2731 KEY TEST mode. Reconnect jumper TEST3 to 1-2.







Note 14: These test points are locat-
ed in the following posi-
tions.
$\times 1$
$\times 10$
(above !C55)
$\times 10$ (right hand side of
$\times 40+\left(\begin{array}{l}\text { (C55) } \\ \times 40 \text { ( } \\ \text { ( } \\ \text { (C50) }\end{array}\right.$
$\times 40+$ (below IC50)
$\times 50 \quad$ (below (C50)
$\times 100$ (below IC50)
$\times 200$ lupper right of (IC62)
Note 15: The input amplifier output vitage $=10 \mathrm{mV} \times 200=2$
The R-OUT voltage loffset
amplifier output) $=2 \mathrm{~V} x$ $2=4 \mathrm{~V}$
Note 16: R-OUT is located on the
left hand side of C 755 .
Note 17 : P-OUT is located on the upper right side of IC76.
Note 18: This involves disconnecting the following comnec. tions.

- Test point $\times 1$ to GND
-098 gate to GND.
-099 gate to $G N D$.
Note 19: This is a check to see that the input protection cir. cuit is operating normally.
Note 20: This is a check to see that the reference voltages are - correctly generated.

C20 lupper right of IC52) C80 (above IC56) C200 (upper right of iC57) C2 (upper right of IC52)






Note 1: The board to be checked is BLG-010165 (TC SCANNER board).
Note 2: K 83 is activated during calibration of
Subsequent operation occurs at every second relay from K 62 up to $\mathrm{CH} .20 . \mathrm{K} 72$ is then activated from CH .21 followed by scanning operation at every second relay from K 62 up to CH .80 .

Note 3: Voltage is applied directly to the $A / D$ converter without being passed via a relay.
Note 4: When two terminal boards are used (TR2741B/E)

 of either terminal board. If not properiy inserted, the program may fail to operate correctly.

Note 5: S531 is the CPU reset switch which makes all control disabled when switched on. Resetting at this stage is used to prevent automatic calibration every 15 seconds.
Note 6: $100 \Omega \times 1 \mathrm{~mA} \pm \mathrm{OFFSET} \equiv 100 \mathrm{mV} \pm 20 \mathrm{mV}$.
Note 7: K83 is forced on.
Note 8: K61 is also forced on




The block diagram for the TR2731 is outlined in Figure 13-18. The operation of each section is described below.
(1) CPU

The $\mu C P U$ used is equivaient to a 6800 type 8-bit microcomputer LSI.
(2) Clock pulse generator (CPG)

Based on a 4 MHz quartz resonator, the CPG generates two-phase clock pulses ( 01 and 02 ) for $C P U$ drive purposes, and also synchronizes the control signals during DMA (Direct Memory Access) transfer.
(3) Clock divider circuit

Generation of timing pulses ( 10 ms ) for the base of TR2731 operation, buzzer clocks ( 4 kHz ), and also heater power supply pulses for fluorescent display tube drive purposes.
(4) Address decoder

Input and output signals used in the TR2731 are decoded from the address bus and obtained as single line signals.
(5) DMA control circuit for data transfer

Input and output to and fram the memory are executed by using DMA during data transfer with the TR2741. Operation can be made independently of program control.
(6) Data transfer circuit

Fixed area data in the memory is converted to serial data by control signal from the DMA control circuit, and then transferred. And serial data from the TR2741 is converted to 8 -bit parallel data and stored in the fixed area of the memory.
(7) Power failure protection and time counting circuit In addition to protecting the CMOS RAM storage contents during a power failure, this circuit also measures the duration of the power failure. The circuit is driven by a built-in battery which also involves the use of a 32.768 kHz quartz resonator.
(8) Memory

The TR2731 integrates an 8 K byte RAM (of which 4 K byte are protected by the back-up battery), and a 48 K byte ROM as standard performance.

Address 0000 to OFFF RAM
2000 to 2FFF RAM (CMOS)
4000 to FFFF ROM
(9) Display circuit and DMA control circuit for display Using a $5 \times 7$ dot 16-digit fluorescent display tube, displays are obtained by memory fixed area correspondence to the display dot pattern with DMA execution according to CPU timing which does not involve the address bus or data bus.
(10) Key switches and LEDs

The key input section is connected to the CPU bus by encoder LSI. This LSI register is also used for dynamic drive of corresponding key switch LEDs and status display LEDs.
(11) Printer

This thermal printer drive circuit includes a built-in memory for storing dot patterns for one line of printing. The circuit also covers printing speed and synchronization.
(12) Option card slots

In addition to $T R 2730-010$, the $510,520,530,540,550,560$, 570, and 580 option card connecting slots plus data bus and address bus control lines are also available.
(13) Power supply

The voltages (and consumption currents) used by the TR2731 are listed below.
a. +5 V $3 \mathrm{~A} \quad$ Logic IC, Vcc
b. $+24 \mathrm{~V} 1 \mathrm{~A} \quad$ Thermal printer
c. $+35 \mathrm{~V} 1 \mathrm{~A} \quad$ TR2741 sensor terminal
d. 12 V 150 mA Data transfer line between TR2731 and TR2741
e. +12 V 300 mA Option card
f. $-12 \mathrm{~V} \quad 100 \mathrm{~mA}$ Option card
g. +37 V 60 mA Display
h. 8 V 60 mA Display


Fig. 3-18 TR2731 block diagram


13-7-2. Outline of Operation

Up to four TR2741 units can be connected to one TR2731 unit. The TR2741 measuring channel number and range are specified by the TR2731. The result of the measurement is received from the TR2741 and calculated in the TR2731.

The data transfer timing with the TR2741 is outlined in Figure 13-19.


Fig. 13-19 Data transfer timing

Although the TR2741 \#1 and \#2, \#2 and \#3, and \#3 and \#4 are displaced by 10 ms from each other, operation within each TR2741 unit is identical.

All operations in the TR2731 are controlled by software program. The configuration concept of software is outlined below.

OS (Operating System)
MAIN (time relations control program)
PROG (condition setting program)
SCAN (measuring commands passed to the TR2741, and data reception program)
PROC (data processing and calculating program)
PRINT (data printing and output program)
Each program operates independently (as is shown in Figure 13-20), the overall operation being regulated by the OS.


Fig. 13-20 Operation outline between programs

Commands are passed to and measured results are received from the TR2741 (in accordance with preset conditions) by clock pulse generated every 10 ms . Immediately upon reception of the data, that data is subject to calculations by the processing program, and immediately upon completion of arithmetic processing of the data, that data is passed out by the output program.

13-8. TR2731 TROUBLESHOOTING

Troubleshooting procedures are performed according to the following flowcharts.




Figure 2-b
${ }^{\text {O32 }}$ Base wavefor


Figure 2-d








Figure 3-a

Note)
Terminal 1


Terminal 2

> 12345
> on $0 \square 0 \square \square$

D1

D2

Terminal 4

D3





Figure 3-i






Note: Setting of S141.

|  | Address being used | Channel No. |
| :---: | :---: | :---: |
| ON only for bit 1 | $3 F F 8 \sim$ 3F1F | 501 |
| ON only for bit 2 | $3 F 10 \sim 3 F 17$ | 502 |
| ON only for bit 3 | $3 F 08 \sim 3 F 0 F$ | 503 |
| ON only for bit 4 | $3 F 00 \sim 3 F 07$ | 504 |

If S141 is reset, switch the POWER off, and then on again.




```
1) Perform the following specifications
    Monitor interval: }\quad0m01\textrm{s},\textrm{sel}(1\textrm{sec}\mathrm{ , selection mode)
    Monitor output channels
                    M01 2ch, %c,off
                    M02 2ch, 1c, off (1)
                    MM4 2ch, 1c, off
                    M05 2ch, ic, off
                    CO1 CH,1 , \V rangemithousm
lll
```


## Channal program

2) Set the TR2730-550 board switches as shown betiow.
S163 $\qquad$ (For CH. 1 thru CH.6)

$$
\mathrm{s} 161 \mathrm{~mm}
$$

3) Set R95, R97, R99, R102, R104, and R106 to center level positions.
4) Start the TR2731 monitor scanning
5) Execute call channel in CH .1 , connect the input cable to TR2741 CH .1 , and short CH .2
6) Apply the voltage between TR2730-550 test point COM ( - ) and test point $\mathrm{CH} .1(+)$, and measure to adjust R107 to obtain reading of $0.0000 \mathrm{~V} \pm 5$ counts.
7) Connect the test point COM for $(-)$ side and the est points of each channel for $(+)$ side and measure the voltage for each connection. Then adjust the resistor for each corresponding channel to obtain readings of $0.0000 \mathrm{~V} \pm 2$ counts.

| Channel | CH. 1 | CH. 2 | CH. 3 | CH.4 | CH. 5 | CH.6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Adjustment resistor | R95 | R.9 | R99 | R102 | R104 | R106 |

8) Set the TR2731 channel program as follows.

G02 CH. 22 V range scaling coefficient: $\mathrm{A}=-0.999, \mathrm{~B}=1$
9) Measure the voltage between test point COM and test point $C H .1$, and adjust R108 to obtain a reading of 0.9990 V $\pm 2$ counts.
10) Set the TR2731 channel program as follows. G01 CH .120 mV range no scaling.
11) Set the TR2730-550 board switches as shown befow.

2) Measure the voltages in the same way as in step 7 , and adjust the corresponding resistors to obtain readings of 9.990 V $\pm 2$ counts.

| Channel | CH .1 | CH .2 | CH .3 | CH .4 | CH .5 | CH .6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Adjustment resistor | R 96 | R 98 | R 100 | R 101 | R 103 | R 105 |



3-54




## SECTION 14

CALIBRATION

14-1. GENERAL

The TR2731/2741 are calibrated on a regular basis (every six months) to ensure that the prescribed measuring accuracy (as indicated in sections 2-2 and 3-2) is maintained, and also after any repairs are carried out. The calibration procedures are described in this section. Note that parts numbers and symbols used in this section are the same as those marked in the circuit diagrams and inscribed on the circuit boards.

14-2. GENERAL PRECAUTIONS
(1) Calibrations require a power supply of $100 \mathrm{~V} \pm 10 \%$ and $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ AC line. Always be sure to warm up the instrument for the prescribed period of time or more ( 30 minutes for the TR2741) before starting any calibration operations.
(2) Calibrations should be conducted within an ambient temperature range of $23^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}$ and at relative humidity no greater than $85 \%$.
(3) Always allow the calibration equipments to warm up for the prescribed period of time.
(4) After completing the calibration, it is recommended to mark in the date, and the time limit for the next calibration on a card or label on the instrument.

## 14-3. PRELIMINARY PREPARATIONS

The equipments required for calibration purposes are listed in the following table. If equipment listed in this table is not available, use of other equipment of equivalent or better performance ratings is permitted.

Table 14-1 Equipment required for calibration purposes

| Type of <br> equipment | Performance rating | Recommended model |
| :--- | :--- | :--- |
| DC voltage <br> standard | Output voltage: $\pm 0 \mathrm{mV}$ to $\pm 20.000 \mathrm{~V}$ <br> Calibration accuracy: $\pm 0.001 \%$ of setting <br> $\pm 0.0001 \%$ of range | TR6120 <br> (by ADVANTEST) |
| DC voltage <br> divider | Calibration accuracy: $\pm 0.001 \%$ or better | TR1323 <br> (by ADVANTEST) |
| Thermocouple <br> [T(CC) type] | Unit with error of less than $\pm 0.05^{\circ} \mathrm{C}$ near <br> $0^{\circ} \mathrm{C}$ |  |
| Reference cold <br> junction unit | Unit with error of less than $\pm 0.05^{\circ} \mathrm{C}$ near <br> $0^{\circ} \mathrm{C}$ | TR7021 <br> (by ADVANTEST) |
| DC voltmeter | Maximum resolution: at least 0.01 mV <br> Accuracy: at least $\pm 0.02 \%$ of rdg. $\pm 2$ counts | TR6875 <br> (by ADVANTEST) |
| DC ammeter | Maximum resolution: at least 0.01 mA <br> Accuracy: at least $\pm 0.5 \%$ of rdg $\pm 5$ counts | TR6840 <br> (by ADVANTEST) |

## 14-4. TR2741 CALIBRATION PRECAUTIONS

(1) The top and bottom covers must be removed for calibration purposes. See Figure 14-1 for the cover removal procedure.
(2) Calibration operations are performed without removing the shield box.
(3) Calibration procedures must always be performed in the prescribed sequence.
(4) The warm-up period ensures that the temperature inside the chassis reaches a fixed even level. Removal of the covers for calibration purposes should be performed in as short a period of time as possible.


Fig. 14-1 Cover removal

The calibration and test point locations are indicated in Figure 14-2 below.


Fig. 14-2 Calibration and test point locations

14-6. CALIBRATION PROCEDURES
14-6-1. Offset Adjustment
(1) Set TERMINAL NO. switch on the rear panel to "1-1".
(2) Remove the bottom cover, and set TEST1 (J15) and TEST2 (J16) with a shorting socket as shown below.

|  |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |


(3) Switch S531 on, and then off again.
(4) Connect a DC ammeter to test points TP.G and P-OUT.
(5) Adjust R 336 to obtain a reading as close as possible to 0 V within the $0 \mathrm{~V} \pm 0.2 \mathrm{mV}$ range
(6) Since the timer adjustment follows, leave the TEST1 and TEST2 settings unchanged.

14-6-2. Timer Adjustment
(1) Set the TERMINAL NO. switch to the same settings used for the offset adjustment.
(2) Connect test point MTST to the test points listed in Table 14-2 with a clip or similar means.
(3) After setting the Terminal No. to the settings listed in Table 14-2, switch S531 on and off, and adjust the corresponding variable resistor control so that the RUN lamp on the front panel commes on.

Table 14-2 Timer adjustment

| Terminal No. | Test point | VR control |
| :---: | :---: | :---: |
| $0-0$ | TP16 | R258 |
| $0-1$ | TP LCH | R204 |
| $0-1$ | G-SW | R205 |

(4) After completing this adjustment, return the shorting socket, etc. to the former status.

14-6-3. Reference Voltage Adjustment
(1) Connect the voltmeter to the test point TP.G and +10 V .
(2) Adjust R 401 to obtain a reading of $+10.000 \mathrm{~V} \pm 1 \mathrm{mV}$.
(3) If this reading cannot be obtained within the $R 401$ range, change the J 10 setting with a shorting socket and adjust R401 again.
(4) After completing this adjustment, close the bottom cover (but without tightening the screws).

14-6-4. Zero Point and Full Scale Adjustments
(1) Connect the voltage divider (ATT.) and DC voltage standard to the input as shown in Figure 14-3.


Fig. 14-3 Input connection
(2) Allow to warm up for about 20 minutes.
(3) Adjust the level of the T1ZERO (R339) and T2ZERO (R338) variable resistor controls to the center of the variable range.
(4) 200 mV range adjustment Specify the 200 mV range to CH .1 , and execute the call channel. Adjust to obtain the reading shown in Table 14-3. Repeat this step two or three times until the correct adjustment is made.

Table 14-3 200 mV range adjustment

| STD. output voltage | Reading | Variable resistor control |
| :---: | ---: | :--- |
| +19.000 V | 190.00 mV | F.S. 200 mV (R375) |
| 0 V | 0.00 mV | Check errors of $\pm 1$ count or better |
| -19.000 V | -190.00 mV | R425 |

(5) 20 mV range adjustment

Specify the 20 mV range to CH .1 , and execute the call channel. Adjust to obtain the reading shown in Table 14-4. Since the 0 V adjustment also results in displacement of the + full scale value, repeat this step two or three times to ensure that the adjustment is correctly made. (Adjust the variable resistor control F.S. 20 mV and T1ZERO alternately). Since the reading does not change immediately when the variable resistor control is turned in this range, always wait for the reading to stabilize (approximately two seconds) each time the control is turned. If the correct reading is not obtained, the control must be turned again.

Table 14-4 20 mV range adjustment

| STD. output voltage | Reading | Variable resistor control |
| :---: | ---: | :--- |
| +19.000 V | 190.00 mV | F.S. $200 \mathrm{mV}(\mathrm{R} 366)$ |
| 0 V | 0.00 mV | T1 ZERO (R339) |
| -19.000 V | -190.00 mV | Check errors of $\pm 2$ counts or better |

For the TR2741B, D, and E types, adjust with the following channels only for the 0 V adjustment.

TR2741B .... CH. 41
TR2741D .... CH. 21 Adjust T2ZERO (R338)
TR2741E .... CH. 41 )
(6) Temperature range adjustment

Specify the "CC:T, ext, off" range to CH .1 , and execute the call channel. Adjust to obtain the reading shown in Table 14-5. If there is a small amount of fluctuation in the reading, take the center of the fluctuation.

Table 14-5 Temperature range adjustment

| STD. output voltage | Reading | Variable resistor control |
| :---: | :---: | :--- |
| +7.9000 V | 79.000 mV | F.S. 80 mV (R363) |
| 0 V | 0.000 mV | Check errors of $\pm 2$ counts or better. |

(7) $2 \mathrm{~V}(20 \mathrm{~V})$ range adjustment

Disconnect the voltage divider, and apply the voltage fram STD. directry to the TR2741 input terminal. Set the 2 V range ( 20 V range) to CH .1 , and execute the call channel. Adjust to obtain the reading shown in Table 14-6.

Table 14-6 2 V and 20 V range adjustments

|  | STD. output voltage | Reading | Variable resistor control |
| :---: | :---: | :---: | :---: |
| 2 V range | +1.9000 V | 1.9000 V | F.S. 2 V (R382) |
|  | $\begin{array}{r} 0 \mathrm{~V} \\ -1.9000 \mathrm{~V} \end{array}$ | $\begin{array}{r} 0.0000 \mathrm{~V} \\ -1.9000 \mathrm{~V} \end{array}$ | Check errors of $\pm 1$ count or better. |
| 20 V range | +19.000 V | 19.000 V | F.S. 20 V (R180) |
|  | $\begin{array}{r} 0 \mathrm{~V} \\ -19.000 \mathrm{~V} \end{array}$ | $\begin{array}{r} 0.0000 \mathrm{~V} \\ -19.000 \mathrm{~V} \end{array}$ | $\} \begin{aligned} & \text { Check errors of } \pm 1 \text { count } \\ & \text { or better. }\end{aligned}$ |

14-6-5. Power Suppy Current Adjustment (TR2741C/D/E types)
(1) Reset the call channel if being executed.
(2) Open the top cover, and connect an ammeter to test points TPI+ and PTI-. Adjust R65 to obtain a reading of $1.00 \mathrm{~mA} \pm 0.01 \mathrm{~mA}$.

14-6-6. Internal Reference Junction Compensation Circuit Adjustment (TR2741A/B/E types)
(1) Connect a T type (copper-constantan) standard sensor to CH .23 , and place the sensor in an automatic reference cold junction unit (which has been allowed to warm up for the prescribed period of time).
(2) Leave the system in this condition for at least 15 minutes.
(3) Specify the "CC:T, into, on" range to CH .23 , and execute the call channel.
(4) Remove the top cover, and adjust R 35 to obtain a reading equivalent to the automatic reference cold junction calibration minus the sensor calibration.
(5) For the TR2741B type, also calibrate in the same way for CH.63.

## 14-6-7. Shorting Socket and Switch Settings

The correct positions for the TR2741 shorting sockets and switches are shown in Figure 14-4. Correct operation is ensured when connected to the TR2731 in this condition.


Note: Some type of board contains no S523.

Fig. 14-4 Correct shorting socket and switch positions

15-1. OUTLINE

This section lists the electrical and mechanical parts used in the TR2731/2741 Computing Data Logger. When replacing parts due to failure, check the ratings and use parts having equivalent ratings. Order electrical and mechanical parts from ADVANTEST or your nearest representative by part and stock numbers.

NOTE

These specifications may be changed without prior
notice by user requirements or improvement of Takeda Riken's quality control.

15-2. SYMBOLS AND ABBREVIATIONS

Table 15-1 lists the symbols and abbreviations used in this manual, including the circuit diagrams, and Tables $15-2$ and 15-3 list the signal names.
(See Appendix "Abbreviations" for the abbreviations inscribed on the front panel, displayed in the display section and printed in output paper.)

## REFERENCE DESIGNATIONS

```
C : Capacitor
CO: Coil
Ca: Cable
F : Fuse
FH: Fuse Holder
IC: Integrated Circuit
J : Electrical Connector, Jack
L : Coil, Inductor
Q : Transistor
R : Resistor
S : Switch
    (Slide, Lever, Push Button)
SW: Rotary Switch
T : Transformer
TP: Test Point (Check Point)
X : Crystal
```

ABBREVIATIONS

| A | ampere | dBm | decibel referred to 1 mW |
| :---: | :---: | :---: | :---: |
| AC | alternating current | $\mathrm{dB}_{\mu}$ | decibel( $\operatorname{OdB} \mu=1 \mu \mathrm{Vrms}$.) |
| ADJ. | adjustment | DC | direct current |
| A/D | analog-to-digital | DET. | detector |
| AMP. | amplifier | DIV.(div.) | division |
| ATT. | attenuator | DISP. | dispersion |
| AStig. | astigmatism |  |  |
| ANT. | antenna | ELECT | electrolytic |
| AUTO | automatic,-operation | EXT. | external |
| BCD | binary coded decimal | F | farad |
| B.P.F. | bandpass filter | FET. | field-effect transistor |
| B.W. | bandwidth | FM | frequency modulation |
|  |  | FREQ. | frequency |
| CAR | carbon | FXD | fixed |
| CAL. | calibrate | FLM | film |
| CER | ceramic |  |  |
| cm | centimeter | $g$ | gram |
| COM. | common | GHz | gigahertz |
| CRT | cathode-ray tube | GND | ground |
| D/A | digital-to-analog | H | henry |
| dB | decibel | h | hour |


| HI | high | OPT. | option |
| :---: | :---: | :---: | :---: |
| H.P.F. | high-pass filter | OSC. | oscillator |
| Hz | Hertz | $\Omega$ | ohm |
| H.POSI. | Horizontal Position | OUT. | output |
| H.GAIN | Horizontal Gain |  |  |
|  |  | p | peak |
| IC | integrated circuit | pF | picofarad |
| IF | intermediate frequency | PL | phase lock |
| INT | internal | PLO | phase lock oscillator |
|  |  | PM | phase modulation |
| kg | kilogram | p-p | peak-to-peak |
| kHz | kilohertz | PPM | pulse-position-modulation |
| k $\Omega$ | kilohm | PRF | pulse-repetition frequency |
| kV | kilovolt |  | picosecond |
|  |  | POSI. | position |
| LED | light-emitting diode | PNP | positive-negative-positive |
| LIN. | linear |  |  |
| LO | low, local oscillator | Q.P. | Quasi Peak Value |
| LOG. | logarithm |  |  |
| L.P.F. | low-pass filter | REF. | reference |
| LEV. | level | RF rms. | radio frequency root-mean-square |
| m | meter |  |  |
| mA | milliampere | SI | silicon |
| MAX. | maximum | s | second(time) |
| $\mathrm{M} \Omega$ | megohm | S.G. | signal generator |
| mg | milligram | SSB | single sideband |
| MHz | megahertz | S.W.R | standing-wave ratio |
| MIN. | minimum |  |  |
| min. | minute(time) | T | timed(slow-blow fuse) |
| mm | millimeter | TTL | transistor-transistor logic |
| MOD. | modulator | TV | television |
| ms | millisecond | TP | test point |
| mV | millivolt |  |  |
| mVrms. | millivolt rms | VAR | variable |
| mW | milliwatt | $V$ | volt |
| $\mu \mathrm{A}$ | microampere | VA | voltampere |
| $\mu \mathrm{F}$ | microfarad | VCO | voltage-controlled oscillator |
| $\mu \mathrm{H}$ | microhenry | VFO | variable-frequency oscillator |
| $\mu \mathrm{s}$ | microsecond | Vp-p | volts peak-to-peak |
| $\mu \mathrm{V}$ | microvolt | Vrms. | volts rms |
| $\mu$ Vrms. | microvolt rms | V.S.W.R. | voltage standing wave ratio |
| $\mu \mathrm{W}$ | microwatt | V.POSI. | vertical position |
| MANU. | manual | V.GAIN | vertical gain |
| MIX. | mixer | W | watt |
|  |  | YIG. | yttrium-iron-garnet |
| NPN | negative-positive-negative |  |  |
| nA | nanoampere | 1st | the first |
| NC | no connection | 2nd | the second |
| NORM. | normal | 3rd | the third |
| ns nW | nanosecond nanowatt |  |  |

Table 15-2 TR2741 signals

| Signal name | Function |
| :---: | :---: |
| ADEND | Second integration end pulse |
| ADSTR | A/D conversion start pulse |
| DR | Strobe signal indicating that the data of RBR1 through RBR8 is established |
| I0 - I6 | CPU data fetch pulse |
| 00-05 | Latch pulse of the data output port from CPU |
| RBR1 - RBR8 | This signal makes TR2731 to output one byte data. |
| SIO+, SIO- | Intercommunication serial signal with the TR2731 |
| TBRE | The signal indicating that one byte data output to the TR2731 is completed. |
| 1st | This signal determines the first integration time of the $A / D$ converter. |
| 2nd | The signal indicating the second integration of the A/D converter |

Table 15-3 TR2731 signals

| Signal name | Function |
| :---: | :---: |
| BAT+V | Internal battery voltage signal |
| CLEAR1-4 | Counter IC clear signal for CH .1 through CH .4 |
| DSPCLK | DC/DC converter input clock for the fluorescenttube display heater power supply |
| ENB signal | This signal indicates the displayable timing in a dynamic illumination display. |
| GT1 - GT8 | Data readout gate signal of the counter IC for CH .1 through CH. 4 |
| $\overline{\text { IRQ }}$ | Interruption request signal for $\mu \mathrm{CPU}$ |
| $\overline{\text { NMI }}$ | Non maskable interruption request signal |
| $\overline{\mathrm{RES}}$ | Reset signal for $\mu$ CPU initialization |
| *RESET I | Reset signal I for overall internal circuit |
| RTC clock | Realtime clock (pulses for every 10 seconds) |
| TSC | Control signal used to maintain $\mu \mathrm{CPU}$ data bus and address bus in a high impedance state |

Note: The symbol - which is indicating a negative logic, is replaced with $*$ in the circuit diagram.

TR2731
MECHANICAL PARTS LIST
FRAME \& CABINET


MECHANICAL PARTS LIST
FRONT PANEL \& CIRCUIT BOARD ASSEMBLY

| $\begin{aligned} & \text { Fig. \& } \\ & \text { INDEX NO. } \end{aligned}$ | Stock No. | Description | Qty |
| :---: | :---: | :---: | :---: |
| 15-2 1 | MBS-17721B | PANEL, front | 1 |
| 2 | MEE-18692A | ESCUTCHEON | 1 |
| 3 | MBZ-17690A | HOLDER, display | 1 |
| 4 | MBZ-17722B | HOLDER, transformer | 1 |
| 5 | MPX-17981B | FILTER, display | 1 |
| 6 | MMX-10278A-1 | CAP, acrylicresin | 14 |
| 7 | MBT-17717B | CORNER, center | 1 |
| 8 | MHT-17737A | FRAME B, side | 1 |
| 9 | MEX-17693A | CUSHION, display | 1 |
| 10 | MBZ-17708A | HOLDER, pcb | 4 |
| 11 | MPX-15081A | SPACER, LED | 14 |
| 12 | MBJ-17726D | PLATE, shield | 1 |
| 13 | KSE-000401-1 | SWITCH, POWER | 1 |
| 14 | MBZ-17709B | HOLDER, switch | 1 |
| 15 | MBZ-18304B | COVER, battery | 1 |
| 16 | MBZ-17729D | CASE, battery | 1 |
| 17 | MBZ-17718B | PLATE, magnet | 1 |
| 18 | MPX-17734C | RAIL A, printer | 1 |
| 19 | JTT-AA003EX01-1 | LUG, tight | 1 |
| 20 | MBJ-17691G | HEAT SINK A | 1 |
| 21 | MBJ-17692C | HEAT SINK B | 1 |
| 22 | MHJ-17731B | SUPPORTER A | 1 |
| 23 | YEE-000151 | GUIDE, pcb | 6 |
| 24 | MBJ-17712D | HOLDER A, guide | 1 |
| 25 | MHJ-17741C | SUPPORTER B | 1 |
| 26 | JCB-AD048JX03-1 | CONNECTOR | 6 |
| 27 | MBJ-17727F | SUPPORTER, board | 1 |
| 28 | MPX-17733D | RAIL B, printer | 1 |
| 29 | MHJ-17742A | HOLDER, board | 1 |
| 30 | MBJ-17728E | HOLDER B, guide | 1 |

TR2731
MECHANICAL PARTS LIST
FRONT PANEL \& CIRCUIT BOARD ASSEMBLY


TR2731
MECHANICAL PARTS LIST
REAR PANEL ASSEMBLY


| $\begin{aligned} & \text { Fi } \\ & \text { IND } \end{aligned}$ | $\mathrm{x}_{\mathrm{x}}^{\mathrm{E}} \mathrm{No}$ | Stock No. | Description | Qty |
| :---: | :---: | :---: | :---: | :---: |
| 15-4 | 1 | MBS-17716D | PANEL, printer | 1 |
|  | 2 | MBJ-18299E | COVER, connector | 1 |
|  | 3 | AAA-EUY10T331R | ASSEMBLY, printer | 1 |
|  | 4 | MKZ-15312A-1 | SPACER, connector | 2 |
|  | 5 | MKX-17982B | SPACER, printer | 4 |
|  | 6 | MEX-17983D | GUIDE, paper | 1 |
|  | 7 | JCB-AB015JX01-1 | CONNECTOR | 1 |
|  | 8 | MBZ-18300A | HOLDER, connector | 1 |
|  | 9 | MBN-18303C | GUIDE, paper | 1 |
|  | 10 | MKN-17720B | STOPPER | 1 |
|  | 11 | MBN-17732D | CASE, paper | 1 |
|  | 12 | MKN-17719C | SLIDING SHAFT | 4 |
|  | 13 | MBJ-17743E | HOLDER, paper case | 1 |
|  | 14 | MBJ-18302B | HOLDER, magnet | 1 |
|  | 15 | YEE-000512 | MAGNET | 1 |
|  | 16 | MBZ-18301A | NUT | 1 |

MECHANICAL PARTS LIST
FRAME \& CABINET


TR2741
MECHANICAL PARTS LIST
CIRCUIT BOARD ASSEMBLY

| Fig. \& INDEX No. | Stock No. | Description | Qty |
| :---: | :---: | :---: | :---: |
| 15-6 | MBJ-17678A | HEAT SINK | 1 |
|  | MBJ-17676B | HOLDER, transformer | 1 |
|  | MEX-17677B | CUSHION, transformer | 1 |
|  | MBS-17985B | CASE, shield | 1 |
|  | MKN-10438A-1 | SPACER, case | 2 |
|  | YEE-000087 | CLIP, plastic | 3 |
|  | MKN-17763B | SHAFT, board | 4 |
|  | MKN-1 2965A-1 | SPACER, pcb | 8/4 |
|  | MKN-10433A-1 | SPACER BOLT | 5 |
|  | MPX-18319A | BLANK PANEL B | (1) |
|  | MBA-17986B | BLANK PANEL A | (1) |
|  | MKE-17679B | HEAT SINK | 1/2 |
|  | MMX-17675B | TERMINAL C (black) | - |
|  | MMX-18044A | TERMINAL D (red) | - |
|  | MBJ-17775D | CHASSIS, guard | 1 |
|  | MMX-10487A | SPACER | 6 |
|  | MMX-10486A | GROMMET | 6 |
|  | MHT-17776A | FRAME A, side | 1 |
|  | YEE-000199-1 | RIVET, plastic | 2 |

Note: 1. BLANK PANEL A and B are mounted only for type $A$ and $C$.
2. Quantity of (8) SPACER and (12) HEAT SINK are dependent on the type of the sensor terminal as listed in the table below.

| Model | SPACER | HEAT SINK |
| :---: | :---: | :---: |
| A, C | 4 | 1 |
| B, D, E | 8 | 2 |

TR2741
MECHANICAL PARTS LIST REAR PANEL ASSEMBLY





Fig. 15-3
TR2731




Fig. 15-6
TR2741
MECHANICAL PART
CIRCUIT BOARD ASSEMBLY


Fig. 15-7
TR2741
MECHANICAL PARTS
rear panel assembly

## SECTION 16 LOCATIONS \& DIAGRAMS

```
TR2741 BLL-010163 INPUT TERMINAL
    BLG-010165 TC SCANNER
    BLG-010164 PT SCANNER
    BLM-010166 A/D CONVERTER
    BLC-010168 REAR SWITCH
    BKB-010167 LED ASSEMBLY
TR2731 BLH-010156 MOTHER BOARD I
    BLG-010389 MOTHER BOARD II
    BLN-010158 PRINTER & POWER SECTION
    BLN-010159 CPU BOARD
    BLN-010160 MEMORY SECTION
    BLJ-010161 PANEL SECTION
    BLJ-010162 KEY BOARD
TR2730-010
    BGJ-010169 MEMORY/AUX. FUNC.
    -510 BGJ-010170 GPIB
    -520 BGJ-010171 BCD OUTPUT
    -530 BGJ-010172 BCD INPUT
    -540 BGJ-010173 RELAY OUTPUT
    -550 BGJ-010174 ANALOG OUTPUT I
    BLB-010175 ANALOG OUTPUT II
    -560 BGJ-010176 SERIAL OUTPUT SWITCH BOARD
    -570 BGJ-010178 DATA MEMORY
    -580 BGJ-010179 PULSE COUNTER I
    BLB-010244 PULSE COUNTER II
```







Fig. 16-5 BLC-010168 locations




















TR2741
SCHEMATIC SECTION

| Parts No. | ADVANTEST <br> Stock No. | Mfr Stock No. |  |
| :--- | :--- | :--- | :--- |
| P1 | JTE-ACOOLEXO1-1 | $*$ | Description |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

TR2741
input terminal
BLI-010163


| Parts No. | ADVANTEST Stock No. | Mir Stock No. | Description |
| :---: | :---: | :---: | :---: |
| IC1 | SIA-TL062-1 | TL062CP | IC: Dual Operational Amplifier |
| D5 |  |  |  |
| thru <br> D8 | SDS-A54-1 | UPA54 | Diode SI |
| D9 | SDS-A64-1 | UPA64E | Diode SI |
| D10 <br> thru D15 | SDS-1S953-1 | 15953 | Diode SI |
| D16 |  |  | Not assigned |
| D17 | SDS-AN401-1 | DAS3401 | Diode SI |
| D18 | SDS-AP401-1 | Dans401 | Diode SI |
| R21 | RCB-AH820-1 | RD25S 8208J | R: FSD CAR 820 \& $+5 \%$ 1/4W |
| R22 | RCB-AR2R2K-1 | RD25S 2.2R8J | R: FXD CAR $2.2 \mathrm{ks}+5 \mathrm{z} 1 / 4 \mathrm{~W}$ |
| R23 | RCB-AB33K-1 | RD25S 33R8 | R: FXD CAR $33 \mathrm{k} 8 \mathrm{C}+5 \mathrm{~F} 1 / 4 \mathrm{~W}$ |
| R24 | RCB-AR220-1 | RD25S 2208J | R: FXD CAR $220 \Omega+5 \% 1 / 4 \mathrm{~W}$ |
| R25 | RCB-AHI5K-1 | RD25S 15R8] | R: FXD CAR 15 bR +5Z 1/4W |
| R26 | RCB-AB820-1 | RD25S 8208J | R: FXD CAR $820 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R27 | RCB-AB820-1 | RD25S 8208] | R: FXD CAR 820 \& $+5 \% 1 / 4 \mathrm{~W}$ |
| R28 | RMF-AR15KFK-I | SN 14K2E15KSE | R: FXD Metal FIM $15 \mathrm{k} \Omega+1 \% 1 / 4 \mathrm{~W}$ |
| R29 | R2F-AB6R8KPG-1 | RF 1/4N $6.8 \mathrm{~K} \mathrm{SR}^{\text {R }}$ | R: FXD Metal FIM $6.8 \mathrm{los}+17 \mathrm{l}$ 1/4W |
| R30 | RWT-AAIO1QB-1 |  | R: FXD WW 1018 |
| R31 <br> thru <br> R34 |  |  | Not assigned |
| R35 | RVR-BE10K-1 | X6T10R | R: $\operatorname{\nabla AR}$ WW $10 \mathrm{k} \Omega$ |
| C41 |  |  | Not ass igned |
| C42 | CMC-AB100PR3R-4 | DM10D101J3 | C: FXD DIPPED MICA 100pF $\pm 5 \%$ 300V |
| C43 | CSK-AC2200P50V-1 | 0.0022 UF 50WV | C: FXD CER $0.0022 \mu \mathrm{~F}+80,-207$ 50V |
| C44 | CTA-ACIU50V-2 | 244M5002-105M | C: FXD ELECT TANTAL $1 \mu \mathrm{~F}+20 \% 50 \mathrm{~V}$ |
| C45 | CTA-ACIO50V-2 | 244M5002-105M | $C$ : FRD ELECT TANTAL $1 \mu \mathrm{~F} \underline{ \pm} \mathbf{2 0 \%} 50 \mathrm{~V}$ |
| L51 | LCL-T00084-1 | LT-3 | L: FXD Coil |
| L52 | LCL-T00084-1 | LT-3 | L: FXD Coil |
| R61 | KRL-000419-1 : | NR-SD-127-5 | Relay |
| $\begin{aligned} & \text { K62 } \\ & \text { thru } \\ & \text { J71 } \end{aligned}$ | KRL-000403-1 | S4E-12V | Relay |
| K72 | KRL-000407-1 . | S2E-L2-127 | Relay |
| K73 thru K82 | KRL-000403-1 | S4E-127 | Relay |
| K83 | KRL-000402-1 | S2E-12V | Relay |
| J91 | DCB-QS0664-1 | TOC-LAI8200N | Connector |
| 592 | DCB-QS0488-1 | TOC-1A06030N | Comnector |
| J93 | JCS-AA05 6PX04-1 | FCN-364P056-AG | Comnector |
| J94 | JCS-AA056PX04-1 | FCF-364P056-AG | Connector |
|  | MEY-1-372A-1 | 401-9630A | Terminal |




| Parts No. | ADVANTEST Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| IC1 | SIT-75468-1 | SN754688 | IC: Darlington Transistor Array |
| IC2 | SIT-75468-1 | SN75468N | IC: Darlington Transistor Array |
| IC3 | SIT-6118-1 | UDN-6118A | IC: Voltage Driver $\quad \because$ |
| IC4 | SIM-4001-1 | TC4001BP | IC: Quad 2-Input Nor Gate |
| IC5 | STI-4011-1 | TC40118P | IC: Quad 2-Input Nor Gate |
| IC6 | SIT4-4528-1 | TC4528BP | IC: Dual Monostable Multivibrator |
| IC7 |  |  | Not assigned |
| IC8 |  |  | Not assigned |
| IC9 | ST4-4013-1 | TC4013BP | IC: Daal D-Type Flip Flop |
| IC10 | SIT4-4828-1 | TC4028BP | IC: BCD to Decimal Decoder |
| IC11 | STI-4828-1 | TC4028BP | IC: BCD to Decimal Decoder |
| IC12 | SIM-4013-1 | TC4013BP | IC: Dual D-Type Flip Flop |
| IC13 | SIT-74LS04-9 | SN74LSO4N | IC: Hex Inverter |
| IC14 | STI-4049-1 | TC4049BP | IC: Hex Buffer/Converter Inverting Type |
| IC15 | SDI-4081-1 | TC40818P | IC: Quad 2-Input Positive AND Gate |
| IC16 |  |  | Not assigned |
| IC17 | STI-4013-1 | TC4013BP | IC: Dual D-Type Flip Flop |
| IC18 | SIIT-4035-1 | TC4035BP | IC: 4-Bit Parallel IN/Parallel OUT Shift Register |
| IC19 | SDI-4035-1 | TC4035BP | IC: 4-Bit Parallel IN/Parallel OUT Shift Register |
| IC20 | STM-4013-1 | TC4013BP | IC: Dual D-Type Flip Flop |
| IC21 | SIT-5012-1 | TC5012BP | IC: 3-Stage Buffer |
| IC22 | STM-4011-1 | TC4011BP | IC: Quad 2-Input NAND Gate |
| IC23 | SIT-4025-1 | TC4025BP | IC: Triple 3-Input Nor gate |
| IC24 | STM-4035-1 | TC4035BP | IC: 4-Bit Parallel IN/Parallel OUT Shift Register |
| IC25 | SIM-4068-1 | TC4068BP | IC: 8-Input NAND Gate |
| IC26 | SIT-4068-1 | TC4068BP | IC: 8-Input NAND Gate |
| IC27 | SDI-4035-1 | TC4035BP | IC: 4-Bit Parallel IN/Parallel OUT Shift Register |
| IC28 | SIT-4012-1 | TC4012BP | IC: Dual 4-Input Positive NaND Gate |
| IC29 | SIT 4 -4585-1 | TC4585BP | IC: 4-bit Magnitude Comparator |
| IC30 | SDM-6402-1 | TC6402BP | IC: Universal Asynchronous Receiver/Transmitter |
| IC31 | SIM-5012-1 | TC5012BP | IC: 3-Stage Buffer |
| IC32 | STM-4520-1 | TC4520BP | IC: Dual Binary UP Counter |
| IC33 | SIM-4520-1 | TC4520BP | IC: Dual Binary UP Counter |
| IC34 | SIT-74LS393-9 | SN74LS393N | IC: Dual 4-bit Binary Counter |
| IC35 | SIM-5012-1 | TCS012BP | IC: 3-Stage Buffer |
| IC36 | ST4-5012-1 | TCS012BP | IC: 3-Stage Buffer |
| IC37 | SIM-4334-1 | TC4334BP | IC: 4R-bit cmos ram |
| I38 <br> thrs <br> IC40 | SIM-5012-1 | TC5012BP | IC: 3-Stage Buffer |
| IC41 | SIM-4027-1 | TC4027BP | IC: Dual J-K Master-Slave Flip Flop |
| IC42 | SDI-4035-1 | TC4035BP | IC: 4-bit Parallel IN/Parallel OUT Shift Register |
| IC43 | STM-4035-1 | TC4035BP | IC: 4-bit Parallel IN/Parallel OUT Shift Register |
| IC44 | SIM-4042-1 | TC4042BP | IC: Quad Clocked "D"-Latch |
| IC45 | SMM 4 -433-1 | TC4334BP | IC: 4R-bit CMOS RAM |


| Parts No. | ADVANTEST Stock No. | Mif Stock No. | Description |
| :---: | :---: | :---: | :---: |
| IC46 thru IC48 | SIT-74LS138-9 | SN74LSI38N | IC: Decoder/Demiliplexer |
| IC49 | SIT-5012-1 | TC5012BP | IC: 3-Stage Buffer |
| ICSO | SIA-TL062-1 | TL062CP | IC: Dual Operational Amplifier |
| IC51 | SIM-4042-1 | TC4042BP | IC: Qual Clocked "D"-Latch |
| ICS2 | SDM-4028-1 | TC4028BP | IC: BCD to Decimal Decoder |
| IC53 |  |  | Not assigned |
| IC54 | STM-6802-3 | MB8870N | IC: 8-bit Microprocessor |
| IC55 | SIT-74LS00-9 | SN74LSOON | IC: Quadruple 2-Input NaND Gate |
| IC56 | SDI-4028-1 | TC4028BP | IC: BCD to Decimal Decoder |
| IC57 | STH-4013-1 | TC4013BP | IC: Dual D-type Flip Flop |
| IC58 | SIS-000370C-1 | * | IC: 32K-bit UV EPROM |
| IC59 <br> thru <br> IC63 | SIT-339-1 | * | IC: Quad Comparator |
| IC64 | SIS-000371C-1 | * | IC: 32R-bit UV EPROM |
| IC65 | SIT-74LSO2-9 | SN74LSO2N | IC: Quadruple 2-Input NoR Gate |
| IC66 | SIT-75468-1 | SN75468N | IC: Dariington Transistor Array |
| IC67 |  |  | Not assigned |
| IC68 | SIM-4528-1 | TC4528BP | IC: Dual Monostable Multivibrator |
| IC69 |  |  | Not assigned |
| IC70 | SIT-74LS390-9 | SN74LS390N | IC: Dual Decoder Counter |
| IC71 | SIT-74LS73-9 | SN74LS73N | IC: Dual J-K Master-Slave Flip Flop |
| IC72 | SIT-74LSO4-9 | SN74LS04N | IC: Hex Inverter |
| IC73 | SIA-TL080-1 | TL080CP | IC: Operational Amplifier |
| IC74 | SIA-TL062-1 | TL062CP | IC: Dual Operational Amplifier |
| IC75 | SIA-TL062-1 | TL062CP | IC: Dual Operational Amplifier |
| IC76 | SIA-308-1. | LM308B | IC: Operational Amplifier |
| IC77 | SIA-TL062-1 | TL062CP | IC: Dual Operational Amplifier |
| IC78 | SIA-301A-12 | LM301A | IC: Operational Amplifier |
| IC79 | SIA-301A-12 | LM301A | IC: Operational Amplifier |
| IC80 | SIA-78150-5 | UPC-7815E | IC: Series Voltage Regulator |
| IC81 | SIA-78150-5 | UPC-7815H | IC: Negative-voltage Regulator |
| IC82 | SIA-78050-5 | UPC-7805H | IC: Voltage Regulator |
| IC83 | SIA-TL080-1 | TL080CP | IC: Operational Amplifier |
| IC84 | SIA-SG3524-1 | SG3524N | IC: Regulating Pulse Width Modulators |
| IC85 | SDZ-6-1 | LM399H | IC: Zener Diode |
| IC86 | SHB-000249B-1 | * | IC: FET Assembly |
| Q91 | STN-2SC1959-1 | 2SC1959 | Transistor SI NPN |
| $\begin{aligned} & \text { Q92 } \\ & \text { thru } \\ & \text { Q97 } \end{aligned}$ | STN-2SC1815-15 | 2SC1815GR | Transistor SI NPN |
| Q98 | SFN-2SR141-18 | * | FET Junction N-Channel |
| Q99 | SFN-2SR141-18 | * | FET Junction N-Channel |
| Q100 |  |  | Not assigned |
| Q101 | STN-2SC1815-15 | 2SC1815GR | Transistor SI NPN |
| Q102 | SFN-2N4393-18 | * | FET Junction N-Channel |
| Q103 | SFN-2N4393-18 | * | FET Junction N-Channel |
| Q104 | SFT-A71-18 | * | FET Junction N-Channel |


| Parts No. | ADVANTEST Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| Q105 | SFI-2SK141-18 | * | FET Junction ${ }^{\text {N-Channel }}$ |
| Q106 | STM-2SC1815-15 | 2SC18156R | Transistor SI NPN |
| Q107 | STP-2SA1015-1 | 2 SA1015 | Transistor SI PNP |
| Q108 thru Q114 | SFF-2SK141-18 | * | FET Junction N-Channel |
| Q115 |  |  | Not assigned |
| Q116 | SFT-840-28 | * | FET Junction N-Channel |
| Q117 | STI-2SC1815-15 | 2SC1815GR | Transistor SI NPN |
| Q118 | SFR-2SE141-18 | * | FET Junction H-Channel |
| Q119 | SFN-2SE141-18 | * | FET Junction N-Channel |
| -Q120 | STP-2SA1015-1 | $25 A 1015$ | Transistor SI PNP |
| Q121 | STI-2SC1815-15 | 2SC1815GR | Transistor SI NPN |
| Q122 | SFN-2SK141-18 | * | FET Junction N-Channel |
| Q123 | STT-2SC1815-15 | 2SC1815GR | Transistor SI NPN |
| Q124 | STIT-2SC2335-1 | 2 SC 2335 | Transistor SI NPN |
| Q125 | STH-2SC2335-1 | 2 SC 2335 | Transistor SI NPN |
| CP131 <br> thru <br> CP133 | SEC-PS2001-1 | PS20018 | Photocoupler |
| D137 thru D148 | SDS-1S953-1 | 15953 | Diode SI |
| D149 |  |  | Not assigned |
| D150 | SDZ-WI 10-1 | WZ-110 | Zener Diode |
| D151 | SDZ-wl 10-1 | WZ-110 | Zener Diode |
| D152 | SDS-1S953-1 | 15953 | Diode SI |
| D153 | SDS-15953-1 | 15953 | Diode SI |
| D154 | SDZ-6110-1 | WZ-110 | Zener Diode |
| D155 | SDS-15953-1 | 15953 | Diode SI |
| D156 |  |  | Not assigned |
| D157 |  |  | Not assigned |
| D158 | SDZ-W061-1 | WZ-061 | Zener Diode |
| D159 | SDZ-w061-1 | W2-061 | Zener Diode |
| D160 | SDS-15953-1 | 15953 | Diode SI |
| D161 | SDS-L. ${ }^{\text {S }}$-19 | * | Diode SI |
| D162 | SDS-LD1-19 | * | Diode SI |
| D163 | SDZ-W1 50-1 | WZ-150 | Zener Diode |
| D164 | SDS-15953-1 | 15953 | Diode SI |
| D165 | SDZ-w081-1 | . WZ-081 | Zener Diode |
| $\begin{aligned} & \text { D166 } \\ & \text { thru } \\ & \text { D171 } \end{aligned}$ | SDP-1S2764-2 | GU-3SZ | Diode SI |
| $\begin{aligned} & \text { D172 } \\ & \text { thru } \\ & \text { D176 } \end{aligned}$ | SDS-1S953-1 | 15953 | Diode SI |
| R177 | RCB-AF220-1 | RD50S 2208 | R: FXD CAR $220 \Omega \pm 5 \% 1 / 2 \mathrm{~W}$ |
| R178 | RCB-AH10R-1 | RD25S 10k J | R: FXD CAR $10 \mathrm{kS} \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R179 | RCB-AH22K-1 | RD25S 22RSJ | R: FXD CAR $22 \mathrm{k} \Omega \pm 5 \% \mathrm{l} / 4 \mathrm{~W}$ |
| R180 | RVR-AR1K-1 | 3321H-1-102 | R: VAR CERMET $1 \mathrm{k} \mathrm{\Omega}$ |


| Parts No. | ADVANTEST Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| ${ }^{\mathrm{R} 181}$ | RCB-ARB30-1 | RD25S 3308 | R : $\mathrm{FXDCAR} 330 \Omega \pm 581 / 4 \mathrm{~W}$ |
| ${ }^{\text {R182 }}$ | RCB-AH10X-1 | RD25S 10 K T | R: FxD CAR $10 \mathrm{kR} \pm 581 / 4 \mathrm{~W}$ |
| ${ }^{\text {R183 }}$ | RCB-AHIX-1 | RD25S 1 k | R: FPDCAR 1 kR $\pm 581 / 4 \mathrm{w}$ |
| ${ }^{\text {R184 }}$ | RCb-AR4R7R-1 | RD25S 4.7 TRS | R: F FD CAR $4.7 \mathrm{kR} \pm 581 / 4 \mathrm{~W}$ |
| 1885 | rCb-AB100K-1 | RD25S 100RSJ | R: PXDCAR $100 \mathrm{ks} \pm 5 \mathrm{za} 1 / 4 \mathrm{~W}$ |
| $\begin{aligned} & \text { R186 } \\ & \text { thru } \\ & \text { R11 } \end{aligned}$ | RC3-AR470-1 | RD25S 470.8 | R: FXD CAR $470 \Omega \pm 58$ 1/4W |
| 8190 | RCB-AB1000-1 | R225s 100\%R | R: FXD CAR $100 \mathrm{kR} \pm 571 / 4 \mathrm{~N}$ |
| 8191 | RCB-ABIOR-1 | RD25S 10k8 |  |
| R192 | 8CB-AB470-1 | RD25S 47085 | R: PxD CAR $470 \Omega \pm 5 \mathrm{E}$ 1/4\% |
| ${ }^{19} 193$ | RCB-AE120-1 | RD25S 1208 | R: FIDCAR $1208 \pm 581 / 4 \mathrm{~N}$ |
| R194 | RCB-AB820-1 | RD25S $8200{ }^{\text {U }}$ | R: F2x Car $820 \Omega \pm 581 / 4 \mathrm{~W}$ |
| 8195 | RCB-AE820-1 | RD25S 82085 | R: FRDCAR $820 \Omega \pm 5 \mathrm{E}$ 1/4N |
| ${ }^{\text {R196 }}$ | RCB-AB33-1 | Rd25S 33RJ |  |
| ${ }^{197}$ | RCB-AH100R-1 | RD25S 100kN | R: FXD CAR $100 \mathrm{kR} \pm 5 \mathrm{Ez} 1 / 4 \mathrm{~N}$ |
| 8198 | RCB-A84R78-1 | RD25S 4.78 | R: FXD CAR $4.7 \mathrm{kS} \pm 581 / 4 \mathrm{~W}$ |
| R199 | RCB-AE4700-1 | RD25S 470\%08 |  |
| R200 | RCB-AR4 $7 \mathrm{R}-1$ | RD25S 47 K | R: F FXC CAR $47 \mathrm{kR} \pm 581 / 4 \mathrm{~W}$ |
| ${ }^{\mathrm{R} 201}$ | RCB-AB220x-1 | RD25S 220R0 | R : FXDCAR $220 \mathrm{kR} \pm 5 \mathrm{sk} 1 / 4 \mathrm{~m}$ |
| R202 | RCB-AR220R-1 | RD25S 22088 | R: FXD CAR $220 \mathrm{kR} \pm 521 / 4 \mathrm{w}$ |
| R203 | RCB-ABl 0 K-1 | RD25s 10 K S | R: FXD CAR $10 \mathrm{kR} \pm 581 / 4 \mathrm{H}$ |
| 8204 | RVE-ARS00R-1 | 3321-1-504 | b: var cermet 500 kR |
| R205 | RVR-AR500x-1 | 3321-1-504 | r: tar cermet 500 kR |
| R206 | RCB-AR470x-1 | RD2SS 470\%0 | R: FXD CAR $470 \mathrm{kR} \pm 58 \mathrm{l} / 4 \mathrm{~m}$ |
| R207 | RCB-AB470x-1 | RD25s 470kS | R: FXD CAR $470 \mathrm{kR} \pm 58 \mathrm{l}$ 1/40 |
| R208 | RCB-AR2R7X-1 | RD25s 2.7805 | R: FXD CAR $2.7 \mathrm{kR} \pm 581 / 4 \mathrm{~m}$ |
| R209 | RCB-AB3 3R-1 | RD25S 33R0 | $\mathrm{R}: \mathrm{FXDCAR} 33 \mathrm{kR} \pm 5 \mathrm{zz} 1 / 4 \mathrm{w}$ |
| R210 | RCB-AF4 $\mathrm{T}^{\text {K-1 }}$ | RD25s 47 K T | R: FXDCAR $47 \mathrm{kR} \pm 58$ 1/4 |
| ${ }^{\text {R211 }}$ | RCB-AB3 3R-1 | RD25S 33ker |  |
| ${ }^{\text {R212 }}$ | RCB-AR4R7K-1 | RD25S 4.78 | R: FXC CAR $4.7 \mathrm{kR} \pm 5 \mathrm{zz} 1 / 4 \mathrm{~N}$ |
| R213 | RCB-AB10x-1 | RD25S 108R | R: FXDCAR $10 \mathrm{kS} \pm 581 / 4 \mathrm{H}$ |
| R214 | RCB-AA10R-1 | RD25S $10 \mathrm{~K} \mathrm{~S}^{5}$ | R: FXD CAR $10 \mathrm{kR} \pm 5 \mathrm{E}$ 1/4W |
| $\begin{aligned} & \text { R215 } \\ & \text { thru } \\ & \text { R2TV } \end{aligned}$ | RCB-AHIK-1 | RD25S 1 k J | $\mathrm{R}: \mathrm{FxD}$ CAR $1 \mathrm{k} 8 \pm 521 / 4 \mathrm{H}$ |
| R223 | RCB-Al100\%-1 | RD25S 100K8 | R: FXDCAR $100 \mathrm{kR} \pm 521 / 4 \mathrm{H}$ |
| R224 | RCB-A84 $\mathrm{T}^{\text {- }}$ - | RD25S 47x ${ }^{\text {S }}$ | R: FRD CAR $47 \mathrm{kR} \pm 581 / 4 \mathrm{~W}$ |
| R225 | RCB-AB33R-1 | R225S 33R25 | R: FXD CAR $33 \mathrm{kR} \pm 581 / 4 \mathrm{~W}$ |
| R226 | RCB-AB33K-1 | Rd25s 33kN | R: F $\times \mathrm{D}$ CAR $33 \mathrm{kR} \pm 581 / 4 \mathrm{~N}$ |
| R227 | RCB-AR330R-1 | RD25S 330RS | R: F $\mathrm{PDDCAR} 330 \mathrm{k} 8 \pm 5 \mathrm{z} 1 / 4 \mathrm{H}$ |
| $\begin{aligned} & \text { R228 } \\ & \text { Rh3 } \end{aligned}$ | RCB-AB33K-1 | RD25s 33kR | R: F F Cocar $33 \mathrm{kR} \pm 5 \mathrm{z}$ 1/4 W |
| R237 | RCB-AHIOK-1 | RD25s 10xת | R: FXD CAR $10 \mathrm{kR} \pm 5 \mathrm{z}$ 1/4w |
| R238 | RC3-A868k-1 | RD25S 68K2J | R: FXD CAR $68 \mathrm{kS} \pm 5 \mathrm{ES} 1 / 4 \mathrm{~W}$ |
| R239 | RCB-AAIOR-1 | Rd25s 10kS | R: FXD CAR $10 \mathrm{kR} \pm 5 \mathrm{~F} / 1 / 4 \mathrm{w}$ |
| R240 | RCB-AB4 $7 \mathrm{~K}-1$ | Rd25S 47x S | R: FXD CAR $47 \mathrm{kR} \pm 5 \mathrm{z} 1 / 4 \mathrm{w}$ |
| ${ }^{\mathrm{R} 241}$ | RCB-AR4 $7 \mathrm{~K}-1$ | Rd25S 478< | R : FXD CAR $47 \mathrm{kR} \pm 5 \mathrm{~F} 1 / 4 \mathrm{~m}$ |
| ${ }^{\text {R242 }}$ | RCB-AH2 $7 \mathrm{~K}-1$ | Rd25S 27 KR | $\mathrm{R}: \mathrm{FSDP}$ CAR $27 \mathrm{kR} \pm 5 \mathrm{~F} 1 / 4 \mathrm{H}$ |


| Parts No. | ADVANTEST Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| R243 | RCB-AB2 7 K-1 | RD25S 278 | R: FXD CAR 27 k \% $\pm 5 \% 1 / 4 \mathrm{~N}$ |
| R244 | RCB-AH330-1 | RD25S 3308J | R: FSD CAR 330 \& $\pm 5 \% 1 / 4 \mathrm{~W}$ |
| R245 | RCB-AB330-1 | RD25S 3308J | R: FXD CAR 330 \& $\pm 5 \% 1 / 4 \mathrm{H}$ |
| R246 | RCB-AH33x-1 | RD25S 33R8J | R: FXD CAR $33 \mathrm{ks} \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R247 | RCB-AB560-1 | RD25S 5608 | R: FSD CAR 560 \& $\pm 5 \%$ 1/4W |
| R248 | RCB-AE33K-1 | RD25S 33kRJ | R: FXD CAR $33 \mathrm{kS} \pm 57 \mathrm{l} / 4 \mathrm{~W}$ |
| R249 | RCB-AB820-1 | RD25S 820@ | R: FXD CAR 820 \& $\pm 5 \% 1 / 4 \mathrm{~W}$ |
| R250 | RAY-AA100K6-1 | TMR6-104 | R: FXD COM $100 \mathrm{k} \Omega$ |
| R251 | RAY-AALOOK4-1 | TMR4-104 | R: FXD COM 100 CO |
| R252 | RAY-AA1 00X4-1 | TITR6-103 | R: FXD COM $100 \mathrm{k} \Omega$ |
| R253 thru B255 | RAY-AAI OK6-1 | TMR6-103 | R: FXD COM 10 kS |
| R256 | RAY-AA100R6-1 | TMR6-104 | R: FXD COM 100 kS |
| R257 | RAY-AA47K6-1 | TMR6-473 | R: FXD COM 47 kS |
| R258 | RVR-AR500x-1 | 3321H-1-504 | R: VAR CERMET 500 kS |
| R259 | RCB-ABl $20 \mathrm{X}-1$ | RD25S 120K0 | R: FAD CAR $120 \mathrm{kS}+5 \% 1 / 4 \mathrm{~W}$ |
| R260 | RCB-AF10 ${ }^{\text {d }}$-1 | RD25S 10\% 5 | R: FXD CAR $10 \mathrm{kS} \pm 5 \mathrm{z}$ 1/4 W |
| R261 | RCB-AF4700-1 | RD25S 470\% | R: FXD CAR $470 \mathrm{k} 8 \times 5 \% 1 / 4 \mathrm{w}$ |
| R262 | BCB-AEI OX-1 | RD25s 10K< J | R: FXD CAR $10 \mathrm{kS} \pm 5 \% 1 / 4 \mathrm{w}$ |
| 8263 | RCB-AHI OK-1 | RD25S 10 K J | R: FXD CAR $10 \mathrm{k} \Omega+5 \% 1 / 4 \mathrm{~W}$ |
| R264 | RCB-AF4 70-1 | RD25S 4708 | $\mathrm{R}: ~ \mathrm{FXD} \mathrm{CAR} 470 \Omega \pm 5 \%$ 1/4W |
| R265 | RCB-AH1 OK-1 | RD25S 10 K | R: FXD CAR 10 l08 $\pm 5 \% 1 / 4 \mathrm{~W}$ |
| R266 | RCB-AH560-1 | RD25S 5608J | $\mathrm{R}=\mathrm{FXD}$ CAR $560 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R267 | RCB-AE3 3x-1 | RD25S 33RתJ | R: PXD CAR $33 \mathrm{kS} \pm 5 \%$ 1/4W |
| R268 | RCB-AHIK-1 | RD25S 1 K J | R : FRD CAR $1 \mathrm{k} \Omega+57 \mathrm{l} / 4 \mathrm{~W}$ |
| R269 | RCB-AB560-1 | RD25S 5608] | R: FSD CAR 560 \& $\pm 5 \% 1 / 4 \mathrm{~W}$ |
| R270 | RCB-AB22K-1 | RD25S 22\% | R: FXD CAR $22 \mathrm{ks} \pm 5 \mathrm{z}$ 1/4W |
| R271 | RCB-AH330K-1 | RD25S 330RJ | R: FXD CAR $330 \mathrm{kS} \pm 5 \% 1 / 4 \mathrm{w}$ |
| R272 <br> thru <br> R274 | RCB-AH1 5R-1 | RD25S 15\% | R: FXD CAR $15 \mathrm{ks} \pm 5 \mathrm{~F} 1 / 4 \mathrm{~W}$ |
| R275 R276 | RCB-AH3R3K-1 | RD25S 3.3KRJ | R: FXD CAR $3.3 \mathrm{k} \Omega \pm 5 \mathrm{Z}$ 1/4W Not assigned |
| R277 R278 | RCB-AFI OR-1 | RD25S 10kSJ | R: FXD CAR $10 \mathrm{kR} \pm 5 \% \mathrm{l} / 4 \mathrm{~W}$ Not assigned |
| R279 | RMF-AR1 80KFK-1 | SN14K2E180RSF | R: FXD Metal FLM $180 \mathrm{kS} \pm 1 \mathrm{Z} 1 / 4 \mathrm{~W}$ |
| R280 | RMP-AR5R6KFX-1 | SN14K2ES.6RSFF | R: FXD Metal FLM $5.6 \mathrm{kS} \pm 1 \% 1 / 4 \mathrm{~W}$ |
| R281 |  |  | Not assigned |
| R282 | RCB-AHI OK-1 | RD25S 10k8 | R: FXD CAR $10 \mathrm{kS} \pm 5 \mathrm{z}$ 1/4W |
| R283 | RMF-ARI 00KFK-1 | SN14R2E100KSEF | R: FXD Metal FLM $100 \mathrm{k} \Omega \pm 17 \mathrm{l} / 4 \mathrm{~W}$ |
| R284 | RMF-AR30KFR-1 | SN14R2E30RSE | R: FXD Metal FLM 30 k |
| R285 | RTF-AR30KFK-1 | SN14R2E30RSIF | R: FXD Metal FLM $30 \mathrm{k} \Omega \pm 17 \mathrm{l} / 4 \mathrm{~W}$ |
| R286 | RCB-AH100K-1 | RD25S 100kJ | R: FXD CAR $100 \mathrm{ks} \pm 5 \%$ 1/4 W |
| R287 | RYF-ARI 5KFR-1 | SN14K2E15KSF | R: FXD Metal FLM $15 \mathrm{k} \Omega \pm 1 \mathrm{l} / 4 \mathrm{~W}$ |
| R288 | RMF-AR1 5 KFK-1 | SN14K2E15RSF | R: FXD Metal FLM $15 \mathrm{k} \Omega \pm 1 \mathrm{l} / 4 \mathrm{~W}$ |
| R289 | RCB-AH330-1 | RD25S 3308J | R: FXD CAR $330 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R290 | RCB-AHIX-1 | RD25S 1 K J | R: FXD CAR $1 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R291 | RCB-AH82K-1 | RD25S 82kR | R: FXD CAR $82 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |


| Parts No． | ADVANTEST Stock No． | Mfr Stock No． | Description |
| :---: | :---: | :---: | :---: |
| R292 | RCB－AE1K－1 | RD25S 1RSN | R：FXD CAR 1 kSs $55 \%$ 1／4W |
| R293 | RCB－AB10K－1 | RD25S 10KSL | R：FXD CAR $10 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R294 | RMF－AR30KFK－1 | SN1 4K2E30RRJ | R：FXD Metal FLM 30 kS 土1\％ $1 / 4 \mathrm{~W}$ |
| R295 | RCB－AH330－1 | RD25S 3308J | R：FXD CAR 330 \＆$\pm 5 \%$ 1／4W |
| R296 | RCB－AB5R6K－1 | RD25S 5．6KSNJ | R：FXD CAR $5.6 \mathrm{kS8}$ I5\％1／4W |
| R297 | RCB－AE330－1 | RD25S 3308J | R：FXD CAR 330 \＆$\pm 58$ 1／4W |
| R298 | RCB－AH39K－1 | RD25S 39R0J | R：FXD CAR $39 \mathrm{kS2} \pm 5 \%$ 1／4W |
| R299 | RCB－AH10K－1 | RD25s 10 K | R：FXD CAR $10 \mathrm{k} \Omega \pm 5 \mathrm{z}$ 1／4W |
| R300 | RCB－AB820R－1 | RD25S 820RSNJ | R：FXD CAR 820 kSi 土5\％1／4W |
| R301 | RCB－AH470R－1 | RD25s 470RRJ | R：FXD CAR $470 \mathrm{~K} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R302 | RCB－AH39K－1 | RD25S 39KSW | R：FXD CAR 39 kSI 土5\％1／4W |
| R303 | RCB－AB398－1 | RD25S 39RSLJ | R：FXD CAR $39 \mathrm{k} \Omega \pm 5 \%$ 1／4W |
| R304 | RCB－AH1R2K－1 | RD25S 1．2kSJ | R：FXD CAR $1.2 \mathrm{k} \Omega \times 5 \% 1 / 4 \mathrm{~W}$ |
| R305 | RMF－AR200KFK－1 | SN1 4K2E200KתF | R：FXD Metal FIM $200 \mathrm{k} \Omega \pm 18$ 1／4W |
| R306 | RCB－AH100K－1 | RD25S 100kSJ | R：FXD CAR $100 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R307 | RCB－AH180－1 | RD25S 180＠J | R：FXD CAR $180 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R308 | RMF－AR18KFK－1 | SN14K2E18K8F | R：FXD Metal FIM $18 \mathrm{k} \Omega \pm 18 \mathrm{l} / 4 \mathrm{~W}$ |
| R309 | RMF－AR220KFK－1 | SN1 4K2E220KRF | R：FXD Metal FLM $220 \mathrm{k} \Omega \pm 18$ 1／4W |
| R310 | RMP－AR68KFK－1 | SN14K2E68KS2F | R：FXD Metal FLM $68 \mathrm{k} \Omega \pm 18 \mathrm{l}$ 1／4W |
| R311 | RMF－AR1 OKFK－1 | SN1 4R2E10R8F | R：FXD Metal FLM $10 \mathrm{k} \Omega \pm 18 \mathrm{l}$（／4W |
| R312 | RMF－AR4 7 KFK －1 | SN14K2E47KS2F | R：FXD Metal FLM $47 \mathrm{k} \Omega \pm 181 / 4 \mathrm{~W}$ |
| R313 | RMP－AR4 $7 \mathrm{KFK}-1$ | SN1 4K2E47KRF | R：FXD Metal FLM $47 \mathrm{k} \Omega \pm 1 \%$ 1／4W |
| R314 | RMF－AR180KFK－1 | SN14K2E180KRF | R：FXD Metal FLM $180 \mathrm{k} \Omega \pm 18$ 1／4W |
| R315 | RMF－AR1 8KFK－1 | SN1 4K2E18K 2 F | R：FXD Metal FLM 18 kS $\pm 1 \%$ 1／4W |
| R316 | RMF－AR330KFK－1 | SN14K2E330RS2F | R：FXD Metal FLM $330 \mathrm{kS} \pm 18$ 1／4W |
| R317 | RMF－AR68KFK－1 | SN14K2E68K8F | R：FXD Metal FLM $68 \mathrm{k} \Omega \pm 18$ 1／4W |
| R318 | RMF－AR2KFK－1 | SN14K2E2KSLF | R：FXD Metal FLM $2 \mathrm{k} \Omega \pm 18 \mathrm{l}$ 1／4W |
| R319 | RCB－AH $100 \mathrm{~K}-1$ | RD25S 100RS ${ }^{\text {J }}$ | R：FXD CAR $100 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R320 | RMF－AR22KFK－1 | SN14K2E22KRF | R：FXD Metal FLM $22 \mathrm{k} \Omega \pm 181 / 4 \mathrm{~W}$ |
| R321 | RMF－AR2KFK－1 | SN14K2E2KS2F | R：FXD Metal FLM $2 \mathrm{k} \Omega$ 工 18 f ／／4W |
| R322 | RCB－AH $100 \mathrm{~K}-1$ | RD25S 100\％ | R：FXD CAR 100 ksz 5\％\％ $1 / 4 \mathrm{~W}$ |
| R323 | RMF－AR2KFK－1 | SN14R2E2KRF | R：FXD Metal FLM $2 \mathrm{k} \Omega \pm 1 \% 1 / 4 \mathrm{~W}$ |
| R324 | RCB－AH100K－1 | RD25S 100RS ${ }^{\text {J }}$ | R：FXD CAR $100 \mathrm{k} \Omega \pm 5 \%$ 1／4W |
| R325 | RMF－AR2KFK－1 | SN1 4K2E2KSF | R：FXD Metal FLM $2 \mathrm{k} \Omega \pm 1 \% 1 / 4 \mathrm{~W}$ |
| R326 | RCB－AH 100K－1 | RD25S 100kSJ | R：FXD CAR 100 kSz 土5\％ $1 / 4 \mathrm{~W}$ |
| R327 | RMF－AR2KFK－1 | SN14R2E2RSF | R：FXD Metal FLM 2 ks ¢ $\pm 1 \%$ 1／4W |
| R328 | RCB－AB $100 \mathrm{~K}-1$ | RD25S 100kS | R：FXD CAR 100 kSt 土5\％1／4W |
| R329 | RMF－AR2KFK－1 | SN1 4K2E2KRF | R：FXD Metal FLM $2 \mathrm{ksz} \pm 1 \%$ 1／4W |
| R330 | RCB－AH $100 \mathrm{~K}-1$ | RD25S 100RS2J | R：FXD CAR $100 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R331 | RCB－AH $100 \mathrm{~K}-1$ | RD25S 100KSLJ | $R$ ：FXD CAR $100 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R332 | RMF－AB39KFK－1 | SN14K2E39RSF | R：FXD Metal FLM $39 \mathrm{k} \Omega \pm 1 \mathrm{z}$ 1／4W |
| R333 | RMF－AB39KFK－1 | SN1 4K2E39K8F | R：FXD Metal FLM $39 \mathrm{k} \Omega \pm 18$ 1／4W |
| R334 | RCB－AH 1 R8K－1 | RD25S 1．8KS ${ }^{\text {J }}$ | R：FXD CAR $1.8 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R335 | RCB－AH51－1 | RD25S 51』J | R：FXD CAR $51 \Omega \pm 5 \%$ 1／4W |
| R336 | RVR－BE50－1 | x6T50S8 | R：VAR WW 50 S8 |
| R337 | RCB－AH330－1 | RD25S 330®J | R：FXD CAR $330 \Omega \pm 5 \%$ 1／4W |
| R338 | RVR－AK100K－1 | 3321世－1－104 | R：VAR CERMET 100 ks 2 |
| R339 | RVR－AK100K－1 | 3321世－1－104 | R：VAR CERMET $100 \mathrm{k} \Omega$ |


| Parts No. | ADVANTEST <br> Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| R340 | RC8-AB330-1 | RD25S 33085 | R: FXD CAR $330 \Omega \pm 521 / 4 \mathrm{~W}$ |
| 8341 | RCB-AB10 ${ }^{\text {- } 1}$ | RD25S 10\%8J |  |
| R342 | RCB-ABSR6R-1 | RD25s 5.6 kRJ | R: FXD CAR $5.6 \mathrm{kSR} \pm 5 \mathrm{zl} 1 / 4 \mathrm{Nm}$ |
| R343 | RCB-AB122-1 | RD25S 12K0 |  |
| R344 | RCB-AHIK-1 | RD25S 1 IROJ | R : F F D Car $1 \mathrm{lor} \pm 551 / 4 \mathrm{~W}$ |
| 8345 | RCB-ABIK-1 | RD25S 1 R J | R: FXD CAR $1 \mathrm{k} 8 \pm \pm 581 / 4 \mathrm{~W}$ |
| 8346 | RCB-AB8201-1 | RD25S 820kR | R: FXD CAR $820 \mathrm{kS} \pm 58 \mathrm{l} / 4 \mathrm{H}$ |
| 8347 | RCB-A ${ }^{\text {a }}$ 70X-1 | RD25S 270R0] | R: FID CAR $270 \mathrm{kS}+58 \mathrm{l} / 4 \mathrm{~W}$ |
| ${ }^{1} 348$ | rCB-AB270x-1 | RD25S 270ker | R: PXD CAR $270 \mathrm{kS} \pm 571 / 4 \mathrm{~W}$ |
| 8349 | RCB-AB820\%-1 | RD25S 820kR | R: FXD Car $820 \mathrm{k} \Omega+58 \mathrm{l} / 4 \mathrm{~W}$ |
| 8350 | RCB-APS6K-1 | RDIS 56\%0J | R: FXD Car $56 \mathrm{k} \Omega \pm 5 \% \mathrm{lw}$ |
| R351 | RCB-AP56R-1 | RD1S 56\% J | R: FID CAR $56 \mathrm{k} \Omega \pm 5 \mathrm{l}$ 1/ |
| R352 | RCB-AB820R-1 | RD25S 820RES | R: F FD CAR $820 \mathrm{kS}+5 \% 1 / 4 \mathrm{~W}$ |
| R353 | RCB-AB820K-1 | RD25S 820kS | R: FXD CAR $820 \mathrm{k} \Omega \pm 52 \mathrm{l} / 4 \mathrm{~W}$ |
| R354 | RCB-AR6R8K-1 | RD25S 6.8K8 | R: FXD CAR $6.8 \mathrm{kS} \pm 52 \mathrm{l} / 4 \mathrm{~W}$ |
| R355 | RCB-AR6R8R-1 | RD25S 6.8 EK | R: FXD CAR $6.8 \mathrm{kS} \pm 52 \mathrm{l} / 4 \mathrm{~W}$ |
| 8356 | RCB-AH2R2-1 | RD25S 2.28 J | R: FXD CAR $2.2 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| ${ }^{\text {R357 }}$ | RCB-AH2R2-1 | RD25S 2.285 | R: FXD CAR $2.2 \Omega \pm 58$ 1/4W |
| R358 | RCB-AF3 3K-1 | RD25S 33k0 |  |
| R359 | RCB-AH2 ${ }^{\text {R }}$ - 1 | RD25S 27 K J | R: PRD CAR $27 \mathrm{kS} \pm 52 \mathrm{l} / 4 \mathrm{w}$ |
| R360 | RCB-AB33K-1 | RD25s 33k8 | R: FXD CAR $33 \mathrm{lor} \pm 58 \mathrm{l} /$ /4W |
| R361 | RCB-AB33R-1 | RD25S 33k8J | R: FXD CAR $33 \mathrm{kS} \pm 53 \mathrm{l} / 4 \mathrm{~W}$ |
| ${ }^{\text {R362 }}$ | RCB-AE2 $\mathrm{TK}^{-1}$ | RD25S 2780 |  |
| R363 | RVI-bEIK-1 | x6T1k8 | R: VAR WW 1 kS |
| ${ }^{8364}$ | RCB-AB2R2-1 | RD25S 2.28 | R: FXD Car $2.2 \Omega \pm 5 \mathrm{z}$ 1/4W |
| R365 | RWT-AS92R7KA-1 | * | R: FXD WW $92.7 \mathrm{k} \mathrm{\Omega}$ |
| R366 | RVR-BE200-1 | 8672008 | R: VAR ww $200 \Omega$ |
| R367 | RMF-ARI 80QFET-1 | SN14R2E1808F | R: FXD Metal FLM $180 \Omega \pm 181 / 4 \mathrm{~W}$ |
| R368 | RMP-AR180¢FR-1 | SN14R2E1808F | R: FXD Metal FLM $180 \Omega+181 / 4 \mathrm{~W}$ |
| R369 | RCB-AH2R2-1 | RD25S 2.28 | R: FZDC CAR $2.2 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R370 | RCB-AR2R2-1 | RD25S 2.28 J | R: FXX CAR $2.2 \Omega \pm 5 \mathrm{E}$ 1/4W |
| R371 | RWT-ASIR7971RA-1 | * | R: FXD WW 1.7971 k ¢ |
| R372 | RWI-AA746R42QA-1 | * | R: FXD WW 746.42 kR |
| R373 | RWT-AA199R45QA-1 | * | R: FXD. WW 199.45 kS |
| R374 | RCB-AE4R7-1 | RD25S 4.78 | $\mathrm{R}: \mathrm{FXD} \operatorname{CAR} 4.7 \Omega \pm 5 \mathrm{E} 1 / 4 \mathrm{~W}$ |
| R375 | RVR-BES00-1 | X6T5008 |  |
| ${ }^{\text {R376 }}$ | RWT-AS1 7R975KA-1 | * | R: FXD WW 17.975 kS |
| R377 |  |  | Not assigned |
| R378 |  |  | Not assigned |
| R379 | RMF-AR47QFR-1 | SN14R2E478F | R: FXD Metal FLM $47 \Omega \pm 1 \mathrm{Z}$ 1/4W |
| 8380 | RWT-AS79R976RA-1 |  | R: FXD WW 79.976 kg |
| R381 | RCB-AB3 3R-1 | RD25S 33kJ | R: FXD CAR $33 \mathrm{k} \Omega \pm 5 \mathrm{z}$ 1/4W |
| ${ }^{\text {R382 }}$ | RVR-BESK-1 | 86T 5k8 | R: VAR WW $5 \mathrm{k} \Omega$ |
| ${ }^{\text {R383 }}$ | RCB-AF2 7 - 1 | RD25S 27 K J | R: FXD CAR $27 \mathrm{k} \Omega \pm 5 \%$ 1/4W |
| R384 | RCB-AR33K-1 | RD25S 33RSJ | R: FXD CAR $33 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R385 | RCB-AH2 $7 \mathrm{~K}-1$ | RD27S $27 \mathrm{~K} \Omega \mathrm{~J}$ | R: FXD CAR $27 \mathrm{k} \Omega \pm 551 / 4 \mathrm{~W}$ |
| R386 | RCB-A\#3 3x-1 | RD25S 33kS | R: FXD CAR $33 \mathrm{k} \Omega \pm 5 \% \mathrm{l} / 4 \mathrm{~W}$ |
| R387 | RCB-AH2 ${ }^{\text {K- }}$ - | RD25S 27 K J | R: FXD CAR $27 \mathrm{k} \Omega \pm 5 \mathrm{~F}$ 1/4W |


| Parts No. | ADVANTEST Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| R388 | RMP-AR6R8KFR-1 |  |  |
| R389 | RCB-AH1 50-1 | RD25S 150RJ | R: FXD Metal FLM $6.8 \mathrm{kR} \pm 12 \mathrm{l} / 4 \mathrm{~W}$ |
| R390 | RCB-AH2RTK-1 | RD25S 2.7K8J |  |
| 8391 | RWI-AS1 OKD-1 | * | $\text { R: } F \times D \mathrm{CWW} 10 \mathrm{k} \Omega$ |
| R392 | RWT-AS3R722KD-1 | * | R: FXD WW 3.722 kS |
| R393 | RMP-AB910FG-1 | RF 1/4N 918 RF | R: FXD Metal FIM $91 \Omega \pm 181 / 4 \mathrm{~W}$ |
| R394 | RIF-AB680QPG-1 | RF 1/4N 6808 RF | R: FXD Metal FIM $680 \Omega \pm 151 / 4 \mathrm{~W}$ |
| $\begin{aligned} & \text { R395 } \\ & \text { thru } \\ & \text { R400 } \end{aligned}$ | RRT-AB91QPG-1 | RF 1/4N91 1 RP | R: FXD Metal FLM $91 \Omega \pm 181 / 4 \mathrm{~W}$ |
| R401 | RVR-BE100-1 | X6T 1008 |  |
| R402 | RCB-AH220-1 | RD25S 2208 | R: FXD CAR $220 \Omega \pm 58$ 1/4w |
| 8403 | RCB-AHIOR-1 | RD25S 10 KR | R: FXD CAR $10 \mathrm{k} \Omega \pm 5 \mathrm{z} 1 / 4 \mathrm{~W}$ |
| 8404 | rcb-am470x-1 | RD25S 470k8 | R: FED CAR $470 \mathrm{KR} \pm 5 \mathrm{~L}$ 1/4W |
| R405 | ray-bax0002-1 | RA942 | R : FXD COM $20 \mathrm{k} \Omega$ |
| R406 | RCB-AEIX-1 | RD25S 1 T ${ }^{\text {J }}$ | R : FXD CAR $1 \mathrm{kR} \pm 57 \mathrm{l} / 4 \mathrm{H}$ |
| 8407 | RCB-AH2R7K-1 | RD25S 2.7R |  |
| R408 <br> thru <br> R410 | RCB-AEIR-1 | RD25S 1 18S | R: FID CAR $1 \mathrm{k} 8 \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R411 | RCB-AHIOR-1 | RD25S 10K85 | R: FXD CAR $10 \mathrm{k} \Omega \pm 5 \mathrm{z} 1 / 4 \mathrm{~W}$ |
| R412 | RCB-AE4RTK-1 | RD25S 4.7REJ | R: FXD CAR $4.7 \mathrm{kR} \pm 5 \mathrm{~F}$ 1/4W |
| R413 | RCB-AF820-1 | RD25S 8200 J | R: FXD CAR $820 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R414 | RCB-AB820-1 | RD25S 8208 | R: FXD CAR $8208 \pm 5 z 1 / 4 \mathrm{~W}$ |
| R415 | RCB-AH1 OR-1 | RD25S 10R0] | R: FXD CAR $10 \mathrm{kS} \pm 5 \mathrm{z} \quad 1 / 4 \mathrm{~W}$ |
| R416 | RCB-AF4R7K-1 | RD25S 4.7\% J | R: FXD CAR $4.7 \mathrm{kR} \pm 5 \% \mathrm{l} / 4 \mathrm{~W}$ |
| R417 | RCB-AB470-1 | RD25S 4708J | R : FXD CAR $470 \Omega \pm 5 z 1 / 4 \mathrm{~W}$ |
| R418 | RCB-ABSR6R-1 | RD25S 5.6 R | R: FXD CAR $5.6 \mathrm{kS} \pm 5 \mathrm{Fz} 1 / 4 \mathrm{~W}$ |
| R419 | RKR-AER43QE-1 | * | R: FXD WW $43 \Omega$ |
| B420 | RCB-AB470-1 | RD25S 4708J | R : FXD CAR $470 \Omega+5 \% 1 / 4 \mathrm{~W}$ |
| R421 | RCB-ARIK-1 | RD25S 1 k J | R: FXD CAR $1 \mathrm{k} \Omega \pm 52 \mathrm{~F}$ 1/4 w |
| R422 | RCB-AB3R3K-1 | RD25S 3.3k8J | R: FXD CAR $3.3 \mathrm{k} \boldsymbol{\Omega} \times 5 \mathrm{sz} 1 / 4 \mathrm{~W}$ |
| R423 | RCB-AB3R3R-1 | RD25S 3.3kת | R: FXD CAR $3.3 \mathrm{k} \times 52 \mathrm{l}$ 1/4W |
| R424 |  |  | Not assigned |
| R425 | RVR-ARS0R-1 | 3321E-1-503 | R: far cermet $50 \mathrm{k} \Omega$ |
| R426 | RCB-AHIR-1 | RD25S 1 IR8 | R : FXD CAR $1 \mathrm{kR} \pm 5 \% \mathrm{l} / 4 \mathrm{~W}$ |
| $\mathrm{R}^{2} 27$ | RAY-AA68K6-1 | TMR6-683 | R: FXD COM 68 kS |
| 8428 | REB-000003-1 | * | R : Eybrid |
| R429 | RCB-AR6R88-1 | RD25S 6.8k | R: FXD CAR $6.8 \mathrm{k} 8 \pm 5 \mathrm{sk} 1 / 4 \mathrm{~W}$ |
| R430 | RCB-AR6R8R-1 | RD25S 6.8 K K | R: FXD CAR $6.8 \mathrm{kS} \pm 5 \mathrm{~F}$ 1/4W |
| R431 | RCB-AH1 50\%-1 | RD25S 150k | R: FXD CAR $150 \mathrm{k} \Omega \pm 521 / 4 \mathrm{~W}$ |
| R432 | RCB-A83308-1 | RD25S 330kS | R: FXD CAR $330 \mathrm{kR} \pm 5 \mathrm{E}$ 1/4W |
| R433 | RCB-AF33K-1 | RD25S 33R8J | R: FXD CAR $33 \mathrm{k} \Omega \pm 5 \% \mathrm{l} / 4 \mathrm{~W}$ |
| R434 | RCB-AB270K-1 | RD25S 270kS | R: FXD CAR $270 \mathrm{kS} \pm 58$ 1/4W |
| R435 | RMF-A R68KFR-1 | SN14R2E68K2F | R: FXD Metal FLM $68 \mathrm{k} \Omega \pm 151 / 4 \mathrm{~W}$ |
| R436 | RMF-AR10RFR-1 | SN14R2E10RSF | R: FXD Metal FIM $10 \mathrm{kR} \pm 1 \%$ 1/4w |
| R437 | RCB-AH1 00\%-1 | RD25S 100k8J | R: FXD CAR $100 \mathrm{k} \Omega \pm 5 Z^{1 / 4 \mathrm{~W}}$ |
| R438 | RCB-AEl 0 R-1 | RD25S 10kJ | R: FXD CAR $10 \mathrm{k} \Omega \pm 5 Z^{1 / 4 \mathrm{~W}}$ |
| R439 | RCB-AH1 00\%-1 | RD25s 100kJJ | R: FXD CAR $100 \mathrm{k} \Omega \times 52 \mathrm{l} / 4 \mathrm{~W}$ |


| Parts No． | ADVANTEST <br> Stock No． | Mfr Stock No． | Description |
| :---: | :---: | :---: | :---: |
| R440 | RCB－AH100K－1 | RD25S 100\％SN | R：FXD CAR $100 \mathrm{kS} \pm 5 \%$ 1／4W |
| R441 | CCK－AB100U25V－1 | 25vB100 | C：FXD ELECT 100uF 25V |
| C442 | CCK－AB3R3O50V－1 | 50VB3R3 | C：FXD ELECT 3．3uF 50V |
| C443 | CFM－ABR04 TU50V－1 | 501N5002－473R | C：FXD Mylar 0．047uF＋80，－20\％50V |
| C444 | CFM－ABR047050V－1 | 501N5002－473K | C：FXD Mylar 0．047uF＋80，－208 50V |
| C445 |  |  | Not assigned |
| C446 | CFIT－ARR220100V－1 | ECQ－E1224KN | C：FXD Polyester FLM $0.22 \mu \mathrm{~F}+80,-20 \% 100 \mathrm{~V}$ |
| C447 | CSM－AC1 000P50V－1 | 0.001 UF 50WV | C：FXD CER 0．001uF 50V |
| C448 | CMC－AC560PR3K－2 | DM15D561J3 | C：FXD DIPPED MICA 560pF $\pm 5 \%$ 300V |
| C449 | CMC－AB1 00PR3K－4 | DM10D101J3 | C：FXD DIPPED MICA 100pF $\pm 5 \%$ 300V |
| C450 | CMC－AB47PR3K－4 | DM100470J3 | C：FXD DIPPED MICA 47pF 558 300V |
| C451 | CSM－AC22P50V－1 | 22PF 50wv | C：FXD CER 22pF $\pm 10850 \mathrm{~V}$ |
| C452 | CSM－AC100P50V－1 | 100PF 50wV | C：FXD CER 100pF $\pm 10850 \mathrm{~V}$ |
| C453 | CTA－AC1U50V－2 | 244M5002－105M | C：FXD ELECT TANTAL $1 \mu \mathrm{~F}$ 土20\％50V |
| C454 | CTA－AC1050V－2 | 244M5002－105M | C：FXD ELECT TANTAL $1 \mu \mathrm{~F}$ 土20\％50V |
| C455 | CMC－AB330PR3K－4 | DM10D331J3 | C：FXD DIPPED MICA 330pF $55 \%$ 300V |
| C456 |  |  | Not assigned |
| C457 | CTA－AC1U50V－2 | 244M5002－105M | C：FXD ELECT TANTAL $1 \mu \mathrm{~F}$ 土20\％50V |
| C458 | CTA－AC1050V－2 | 244M5002－105M | C：FXD ELECT TANTAL $1 \mu \mathrm{~F} \pm 20850 \mathrm{~V}$ |
| C459 | CFM－AMR10100V－1 | ECQ－P1104FZ | C：FXD Polyester FLM $0.1 \mu \mathrm{~F}+80,-20 \% 100 \mathrm{~V}$ |
| C460 | CFM－AMR10100V－1 | ECQ－P1104F2 | C：FXD Polyester FLM $0.1 \mu \mathrm{~F}+80,-208$ l00V |
| C461 | CTA－AC1U50V－2 | 244M5002－105M | C：FXD ELECT TANTAL $1 \mu \mathrm{~F} \pm 20850 \mathrm{~V}$ |
| C462 | CTA－AC1U50V－2 | 244M5002－105M | C：PXD ELECT TANTAL $1 \mu \mathrm{~F}$ 土20\％50V |
| C463 | CSM－AC33P50V－1 | 33PF 50wv | C：FXD CER 33pF $\pm 10 \%$ 50V |
| C464 thru C466 | CTA－AC1U50V－2 | 244M5002－105M | C：FXD ELECT TANTAL $1 \mu \mathrm{~F} \pm 20850 \mathrm{~V}$ |
| C467 | CFM－AMR1U100V－1 | ECQ－P1104FZ | C：FXD Polyester FLM $0.1 \mu \mathrm{~F}+80,-208100 \mathrm{~V}$ |
| C468 | CTA－AC1U50V－2 | 244M5002－105M | C：FXD ELECT TANTAL $1 \mu \mathrm{~F} \pm 20850 \mathrm{~V}$ |
| C469 | CTA－AC1U50V－2 | 244M5002－105M | C：FXD ELECT TANTAL $1 \mu \mathrm{~F} \pm 20850 \mathrm{~V}$ |
| C470 | CSM－AC33P50V－1 | 33PF 50wV | C：FXD CER 33pF $\pm 10850 \mathrm{~V}$ |
| C471 | CTA－AC3R7U25V－1 | 242M2502－475M | C：FXD ELECT TANTAL 4．7uF $\pm 208$ 25V |
| C472 | CFM－AB2200P50V－1 | 501N5002－222K | C：FXD FXD Mylar 2200pF $\pm 108$ 50V |
| C473 | CSM－ACRO1U50V－1 | 0.01 UF 50WV | C：FXD CER 0．01uF＋80，－20\％50V |
| C474 | CFM－AAROIUR1K－1 | 441N1003－103k | C：FXD Myler $0.01 \mu \mathrm{~F} \pm 1081 \mathrm{KV}$ |
| C475 | CCK－AB33U50V－1 | 50vB33 | C：FXD ELECT 33uF 50V |
| C476 | CSM－ACR1025v－1 | 0.1 UF 25wv | C：FXD CER 0．1uF＋80，－208 50V |
| C477 | CSM－ACR047U50V－1 | 0.047 UF 50WV | C：FXD CER 0．047uF＋80，－20\％50v |
| C478 | CCK－AB220U25V－1 | 25 VB 220 | C：FXD ELECT 220uF 25v |
| C479 | CCK－AB100050V－1 | 50 VB 100 | C：FXD ELECT 100uF 50V |
| C480 | CCK－AB33001 0V－1 | 10VB330 | C：FXD ELECT 330uF 10 V |
| C481 | CSM－ACR1U25V－1 | 0.1 UF 25wV | C：FXD CER $0.1 \mu \mathrm{~F}+80,-20 \% 25 \mathrm{~V}$ |
| C482 | CCK－AB220U25V－1 | 25 VB 220 | C：FXD ELECT 220uF 25v |
| C483 | CSM－ACR1U25V－1 | 0.10 F 25 WV | C：FXD CER 0．1uF＋80，－20\％25v |
| C484 | CTA－AC4R7U25V－1 | 242M2502－475M | C：FXD ELECT TRANTAL 4．7uF $\pm 20825 \mathrm{~V}$ |
| C485 | CSM－AC4700P50V－1 | 0.0047 UF 50WV | C：FXD CER 0．0047uF＋80，－20\％50V |
| C486 | CCK－AB33U25V－1 | 25 VB 33 | C：FXD ELECT 33uF 25v |
| C487 | CCX－AB33U25V－1 | 25VB33 | C：FXD ELECT 33 3 F 25 v |






TR2731
SChEMATIC SECTION


TR2731
MOTHER I
BLE-010156

| Parts No. | ADVANTEST Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| IC1 | SIA-SC32405-1 | EHD-SC32405 | IC: Voltage Regulator |
| IC2 | SIA-SC30505-1 | EHD-SC30505 | IC: Voltage Regulator |
| IW | SIT-74LS244-9 | SN74LS244N | IC: Octal Buffer/Line Driver/ Line Receiver Low Power |
| $\begin{aligned} & \text { Q11 } \\ & \text { thru } \\ & \text { Q13 } \end{aligned}$ | STH-2SC1826-1 | 2SC1826 | Transistor SI NPN |
| D19 | SDP-SM1-1 | SY-1-02 | Diode SI |
| D20 | SDP-SM1-1 | SY-1-02 | Diode SI |
| D21 | SDS-RB402-2 | S4VB10 | Diode SI |
| D22 | SDS-RB402-2 | S4VB10 | Diode SI |
| D23 <br> thru <br> D2S | SDP-W02-1 | W02 | Diode SI |
| D26 | NLD-000020-1 | SLP-24B | Light Emitting Diode |
| D27 | SDZ-W150-1 | WZ-150 | Zener Diode |
| D28 | SDZ-W240-1 | WZ-240 | Zener Diode |
| D29 | SD2-W090-1 | WZ-090 | Zener Diode |
| R31 | RCB-AHIK-1 | RD25S 1R8J | R: FXD CAR $1 \mathrm{kS} \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R32 | RCB-AH100-1 | RD25S 1008 | R: FXD CAR $100 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R33 |  |  | Not assigned |
| R34 | RWR-AER22Q-1 | * | R: ${ }^{\text {PAR WW }} 228$ |
| R35 | RWR-AER22Q-1 | * | R: $\mathrm{\nabla AR}$ WH 220 |
| R36 | RCB-AH330-1 | RD25S 3308 | R: FXD CAR 330 \& $\pm 5 \%$ 1/4W |
| R37 | RPW-ACR-1-2 | RH10-0.18K |  |
| R38 |  |  | Not assigned |
| R39 | RCB-AE22X-1 | RD25S 22KRJ | R: FXD CAR $22 \mathrm{kS} \pm 5 \%$ 1/4W |
| R40 | RCB-AHIR-1 | RD25S 1Kת | R: FXD CAR $1 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~N}$ |
| R41 | RCB-AE1 00-1 | RD25S 1008J | R: FXD CAR $100 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R42 | RCB-AH4R7K-1 | RD25S 4.7RתJ | R : FXD CAR $4.7 \mathrm{kS} \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R43 | RCB-A 3 4R7R-1 | RD25S 4.7KתJ | R: FXD CAR $4.7 \mathrm{k} \Omega \pm 5 \% \mathrm{l} / 4 \mathrm{~W}$ |
| R44 |  |  | Not assigned |
| R45 |  |  | Not assigned |
| R46 | RVR-AR2K-1 | 3321A-1-202 | R: VAR CERMET 2 ks |
| R47 | RVR-ARS00-1 | 33218-1-501 | R: VAR CERMET $500 \Omega$ |
| C51 | CSM-ACR1US OV-1 | 0.10 F 50W0 | C: FXD CER $0.1 \mu \mathrm{~F}+80,-20 \% 50 \mathrm{~V}$ |
| C52 | CSM-ACR022U50V-1 | 0.022 UF 50WV | C: FXD CER 0.022uF +80, -20\% 50V |
| C53 | CSM-ACRO47U50V-1 | 0.04 TUF 50WV | C: FXD CER 0.047 F + $80,-20 \%$ 50V |
| C54 | CSM-ACRO47U50V-1 | 0.047 JF SOWV | C: FXD CER 0.047 $\mu \mathrm{F}+80,-20 \%$ 50V |
| C55 |  |  | Not assigned |
| C56 | CCK-AB1 00050V-1 | 50VB100 | C: FXD ELECT 100~F S0V |
| C57 | CCK-AC1000UR1K-1 | $100 \mathrm{VP1} 1000$ | C: FXD ELECT 1000 F ( 100V |
| C58 | CCK-AC1000UR1K-1 | 100VP1000 | C: FXD ELECT 1000 100 F |
| C59 | CCK-AB470USOV-1 | 50VB470 | C: FXD ELECT $470 \mu \mathrm{~F} 50 \mathrm{~V}$ |
| C60 | CCK-AB4 70U50V-1 | 50vB470 | C: FXD ELECT 470رF 50V |
| C61 | CCK-AC4700U5 0V-1 | 50VB4700 | C: FXD ELECT 4700 $\mathrm{F}^{\text {5 50V }}$ |
| C62 | CCK-AB4 $70016 \mathrm{~V}-1$ | 16VB470 | C: FXD ELECT 470uF 16V |
| C63 | CCK-AB470U1 6V-1 | $16 \mathrm{VB4} 70$ | C: FXD ELECT 470 HF 16 V |




TR2731
PRINTER \& POWER
BLN-010158

| Parts No. | ADVANTEST Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| IC1 | ssa-555-7 | [a1755585 | Ic: rimer |
| rc2 | st7-7453393-9 | sv7445393M | Tc: Dual 4-Bit Binary Counter Low Power |
| res | STT-74.500-9 | sm74.500\% | Ic: ¢uadruple 2 -Input Nand Gate Low Power |
| ${ }^{\text {rc4 }}$ | sta-393-1 | ${ }_{\text {un93 }}$ | IC: Dual voltage Comparator |
| ${ }_{\text {res }}$ | Sİ-74514-9 | sxz745148 | IC: Hex schmitt-Trigger Inverter Low power |
| rc6 | STT-7403-1 | sa7403\% | IC: QuadrupleCollector <br> Output <br> OTnput NaND Gate with open |
| Ic7 | sta-555-7 | Ea17755ps | Ic: rimar |
| rcs | SIT-75472-1 | Sn75472P | Ic: 3 -state output |
| זe9 | six-75472-1 | Sx75472P | Ic: 3-state output |
| ${ }_{\text {rcto }}$ | ssen-2114-8 | ви4721148-4 | IC: 4x bit static ram |
| ${ }_{\text {rc11 }}$ | sti-74.5175-9 | sm74is175s | IC: Complementary output Common Direct Clear |
| rc12 TC13 | SIT-74504-9 | ${ }^{\text {sw74 } 4 \text { So4w }}$ | IC: Hex Inverter Low Power |
| $\mathrm{rc}^{13}$ | sti-745008-9 | sm74.4089 |  |
| rc14 | SIT-74574-9 | SN\%4L574 | IC: Dual D-Type Positive-Edge-Triggered Plip Plop with Preset AND Clear Low Power |
| rc15 | sit-75472-1 | Sx75472P | Ic: 3 -state output |
| rc16 rc17 | STT-75472-1 smene-214-8 | ${ }^{\text {smv5472P }}$ | Ic: 3-state Output |
| rc17 IC18 | spen-2114-8 sTr-74524-9 |  | IT: 4R bit Static RaM |
|  | st7-7445244-9 | SN77452444 |  |
| ${ }_{\text {r19 }}$ | sti-74574-9 | sm74.4574 | IC: Dual D-Type positive-Zdge-Triggered plip Flop vitp Prease AND Clear Live power 10p with Preset AND Clear Low Powe |
| rczo | sti-74.5244-9 | 5N7445244N |  |
| IC21 IC22 | sit-74:S1 1389 STA-78120-5 | SN745S138N UPC7812 | IC: 3-to-8 Line Decoder/Multiplexer Low Power IC: Series Voltage Regulator |
| ז¢23 | STA78120-5 | - PeC7912 $^{\text {a }}$ | Ic: Series voltage Regulator |
|  | sTP-25SA43-1 | 2 2SA73 | Transistor SI PNP |
| ${ }^{238}$ | STM-2SD330-1 | 258330 | $\mathrm{Transistor} \mathrm{SI} \mathrm{mpN}^{\text {den }}$ |
| ${ }^{3} 39$ | STP-2s4473-1 | ${ }^{254473}$ | Transistor SI PNP |
| -940 | STP-2sa $1015-1$ | 2SA1015 | Transistor SI PNP |
| ¢ | STW-2SC1815-15 | 2SC18156R | Transistor SI wen |
| 245 046 | sfp-2sa $1015-1$ smy-2sclis-15 | ${ }^{2511015}$ | Transistor SI PNP |
| 246 <br> 84 | STNT-2SC1815-15 STN-2scli $15-15$ | 2Sc1815GR 2 cc 18 gar | ${ }_{\text {Transistor SI NPN }}^{\text {Tren }}$ |
| ¢488 |  |  | Transistor SI Trans istor SI NPN |
| 849 | STP-2sasio-1 | $2 \mathrm{SaS10}$ | Transistor SI Pwp |
| ${ }^{250}$ | STNT-25c982-1 | ${ }^{259982}$ | Transistor SI NPN |
| (ent | STN-2SC1815-15 | $25 \mathrm{Cl1815GR}$ | Transistor SI MPN |
| 255 | STN-2scsio-1 | $2 \mathrm{Ccs10}$ | Transistor SI MeN |
|  | sps-19953-1 | 15953 | Diodo si |


| Parts No. | ADVANTEST Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| D75 | SDP-SM1-1 | St-1-02 | Diode SI |
| D76 | SDP-SM1-1 | SM-1-02 | Diode SI |
| D77 | SD2-w162-1 | wz-162 | zener Diode |
| D78 | SD2-w177-1 | wz-177 | zener Diode |
| D79 <br> thru <br> D81 | SDP-SM1-1 | ST-1-02 | Diode SI |
| D82 | SD2-w177-1 | W2-177 | Zener Diode |
| D83 | SDZ-w061-1 | wz-061 | zener Diode |
| D84 <br> thru <br> D86 | SDP-w02-1 | W02 | Diode SI |
| D87 | SD2-w056-1 | Wz-056 | Zener Diode |
| D88 | SDS-15953-1 | IS953 | Diode SI |
| R91 | RVR-CD10x-2 | 3321N-1-103 | R: Jar cermet 10 ks |
| R92 | RVR-CDSK-2 | 3321N-1-502 | R: VAR CERMET 5 ks |
| R93 | RTR-CDSR-2 | 3321N-1-502 | r: Var cermet 5 k |
| R94 <br> thru <br> R96 | RAY-AA3R3K4-1 | TMR4-332 | R: FXD COM $3.3 \mathrm{k} \Omega$ |
| R97 | RAY-AA10R4-1 | TMR4-103 | R: FXD COM 10 kS |
| R98 | RAY-AAIOK4-1 | TMR4-103 | R: FXD COM 10 kS |
| $\begin{aligned} & \text { R99 } \\ & \text { thru } \\ & \text { R105 } \end{aligned}$ | RCB-ARIK-1 | RD25S | R: FXD CAR $1 \mathrm{kS} \pm 5 \overline{1 / 4 \mathrm{~W}}$ |
| R106 | RCB-AF330-1 | RD25S 3308J | R: FXD CAR $330 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R107 | RCB-AB470-1 | RD25S 4708 | R: FXD CAR $4708 \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R108 | RCB-AF4R7K-1 | RD25S 4.7\% J | R: FXD CAR $4.7 \mathrm{kS} \pm 5 \mathrm{z} 1 / 4 \mathrm{~W}$ |
| R109 | RCB-AR3R3R-1 | RD25S 3.3k8J | R: FXD CAR $3.3 \mathrm{k} \Omega \pm 5 \mathrm{z}$ 1/4W |
| R110 | RCB-AH2R2X-1 | RDS0S $2.2 \mathrm{~K} \Omega \mathrm{~J}$ | $\mathrm{R}: \mathrm{FXD}$ CAR $2.2 \mathrm{k} \Omega \pm 5 \mathrm{z} 1 / 2 \mathrm{~W}$ |
| R111 | RCB-AE150-1 | RDSOS 1508 | R: FXD CAR $150 \Omega \pm 5 \%$ 1/2W |
| 8112 | RCB-AR220-1 | RD25S 2208 J | R: FXD CAR $220 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R113 | RCB-AH220K-1 | RD25S 220kR | R: FXD CAR $220 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R114 | RCB-AR180K-1 | RD25S 180ROJ | R: FXD CAR $180 \mathrm{k} \Omega \pm 5 \mathrm{~L} 1 / 4 \mathrm{~W}$ |
| R115 | RCB-AH18K-1 | RD25S 18K8 | R: FXD CAR $18 \mathrm{kS} \pm 5 \mathrm{z}$ 1/4W |
| R116 | RCB-AHIO-1 | RD25S 10KRJ | R: FXD CAR $10 \mathrm{kS} \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R117 | RCB-AH4RTX-1 | RD25S 4.7K< | R: FXD CAR $4.7 \mathrm{kS} \pm 5 \mathrm{z}$ 1/4W |
| R118 | RCB-AHIR-1 | RD25S $1 \mathrm{k} \Omega \mathrm{J}$ | R: FID CAR $1 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R119 | RCB-AB4 7 K-1 | RD25S 47KאJ | R: FXD CAR $47 \mathrm{lc} \pm 531 / 4 \mathrm{~W}$ |
| R120 | RCB-AB220R-1 | RD25S 220RSJ | R: FXD CAR $220 \mathrm{k} \Omega \pm 5 z^{1 / 4 \mathrm{~W}}$ |
| R121 | RCB-AH1 2K-1 | RD25S 12RJ | R: FXD CAR $12 \mathrm{kS} \pm 5 \mathrm{~F}$ 1/4W |
| R122 | RCB-AR470-1 | RD25S 4708J | R: FXD CAR $470 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R123 | RCB-AH220-1 | RD25S 2208 | $\mathrm{R}: \mathrm{FXD}$ CAR $220 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R124 | RCB-AH10K-1 | RD2SS 10R8J | $\mathrm{R}: \operatorname{FXD}$ CAR $10 \mathrm{k} \Omega \pm 5 \mathrm{z} 1 / 4 \mathrm{~W}$ |
| R125 | RCB-AH220-1 | RD25s 2208 J | R: FXD CAR $220 \Omega \pm 5 \mathrm{E}$ 1/4 H |
| R126 | RCB-AH10R-1 | RD25S 10KRJ | $\mathrm{R}: \mathrm{FXD}$ CAR $10 \mathrm{k} \Omega \pm 5 \mathrm{E} 1 / 4 \mathrm{~W}$ |
| R127 | RCB-AH33R-1 | RD25S 33R8J | $\mathrm{R}: \operatorname{FXD}$ CAR $33 \mathrm{kS} \pm 5 \% \mathrm{l} / 4 \mathrm{~W}$ |
| R128 | RCB-ABIK-1 | RD25s 1 | R: FXD CAR $1 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R129 | RCB-AH4RTR-1 | RD25S 4.7k J | R: FXD Car $4.7 \mathrm{kS} \pm 5 \mathrm{z}$ 1/4 W |
| R130 | RCB-AHIOK-1 | RD25s 10RתJ | $\mathrm{R}: \mathrm{FXD} \operatorname{CAR} 10 \mathrm{k} \Omega \pm 5 \mathrm{z} 1 / 4 \mathrm{~W}$ |


| Parts No. | ADVANTEST <br> Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| R131 | RCB-AFISR-1 | RD25S 18K0] |  |
| R132 | RCB-AHIR-1 | RD25S 1 K J |  |
| R133 | RCB-AB33-1 | RD25S 338J | R : FXD CAR $33 \Omega+5 \% 1 / 4 \mathrm{~W}$ |
| R134 | RCB-AFIOR-1 | RD25S 10R03 | R : FXD CAR $10 \mathrm{kR} \pm 5 \% \mathrm{l} / 4 \mathrm{H}$ |
| 8135 |  |  |  |
| thru R137 | RCB-AB470-1 | RD25S 4708 J |  |
| 8138 | RCB-AB100R-1 | RD25S 100R ${ }^{\text {J }}$ | R: PXD CAR $100 \mathrm{kS} \pm 52 \mathrm{l} / 4 \mathrm{w}$ |
| R139 | RCB-AH180-1 | RD25S 1808 | R: FXD CAR $180 \Omega \pm 581 / 4 \mathrm{~W}$ |
| R140 | RCB-AH180-1 | RD25S 180@ | R: FXD CAR $180 \Omega \pm 581 / 4 \mathrm{~W}$ |
| R141 | 8CB-AFIOR-1 | RD25S 10R8J | R: FKD CAR $10 \mathrm{kR} \pm 52 \mathrm{l} / 4 \mathrm{~W}$ |
| 8142 | rCB-ABIX-1 | RD25S 1 1R0] | R: FXD CAR $1 \mathrm{kS} \pm 5 \% 1 / 4 \mathrm{~N}$ |
| R143 | RCB-AHIR2X-1 | RD25S 1.2R05 | R: FXD CAR $1.2 \mathrm{lor} \pm 5 \mathrm{~F}$ 1/4w |
| 8144 | RCB-AH100K-1 | RD25S 100kS | R: FXD CAR $100 \mathrm{kS}+58 \mathrm{l}$ 1/4 |
| R145 | RCB-AF470-1 | RD25S 4700 J | R: FID CAR $470 \Omega \pm 5 z 1 / 4 \mathrm{~W}$ |
| R146 | RCB-AR470-1 | RD25S 4708J | R: FXD CAR $470 \Omega \pm 52 \mathrm{l} / 4 \mathrm{~W}$ |
| 8147 | RCB-AHIOR-1 | RD25S 10RS | R: FXD CAR $10 \mathrm{kR} \pm 5 \mathrm{El} 1 / 4 \mathrm{~W}$ |
| 8148 | RCB-AB33X-1 | RD25S 33K0] | R: FXD CAR $33 \mathrm{kS} \pm 5 \mathrm{z} 1 / 4 \mathrm{~W}$ |
| R149 | RCB-AR4R7K-1 | RD25S 4.7K8J | R: FXD CAR $4.7 \mathrm{kR} \pm 5 \mathrm{z}$ 1/4 H |
| R150 | RCB-AH10 ${ }^{\text {- }}$ - | RD25S 10R0] | R: FXD CAR $10 \mathrm{kR} \pm 5 \mathrm{z} 1 / 4 \mathrm{~W}$ |
| R151 | RCB-AE4. $\mathbf{T K}^{\text {- }}$ | RD25S 4.7K8J | R: FXD CAR $4.7 \mathrm{kSR} \pm 5 \mathrm{z} 1 / 4 \mathrm{~W}$ |
| R152 | RCB-ABlor-1 | RD25S 10R0J | R: FXD CAR $10 \mathrm{k} \Omega \pm 5 \mathrm{z} 1 / 4 \mathrm{~W}$ |
| R153 | RCB-AB3R3R-1 | RD25S 3.3K8J | R: FXD CAR $3.3 \mathrm{kR} \pm 5 \mathrm{~F}$ 1/4 H |
| R154 | RCB-AB2R7K-1 | RD25S 2.7RSJ | $\mathrm{R}: \mathrm{FXD} \mathrm{CAR} 2.7 \mathrm{kS} \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R155 | RCB-AB3R3K-1 | RD25S 3.3kSJ | $\mathrm{R}: ~ \mathrm{FXD}$ CAR $3.3 \mathrm{kS}+5 \mathrm{~F}$ 1/4W |
| R156 | RC3-AR820-1 | RD25S 8208J | R: FXDCAR $820 \Omega \pm 581 / 4 \mathrm{~W}$ |
| R157 | RCB-AR4RTK-1 | RD25S 4.780 | R : FXD CAR $4.7 \mathrm{kS}+5 \mathrm{zk} 1 / 4 \mathrm{~W}$ |
| R158 | RCB-AR100-1 | RD25S 1008 | R: FXD CAR $100 \Omega \pm 581 / 4 \mathrm{~W}$ |
| ${ }^{\text {R159 }}$ | RCB-AR2R2X-1 | RD25S $2.2 \mathrm{k} \Omega \mathrm{J}$ | R: FXD CAR $2.2 \mathrm{kR} \pm 5 \mathrm{z}$ 1/4W |
| R160 | RCB-AR330K-1 | RD25S 330k0 | R: FXD CAR $330 \mathrm{kS} \pm 5 \mathrm{z}$ 1/4W |
| R161 | RCB-ABIR2X-I | RD25S 1.2kJ | R: FXD CAR $1.2 \mathrm{kR} \pm 5 \mathrm{z}$ 1/4W |
| R162 | RCB-AF180-1 | RD25S 1808J | R: FXD CAR $180 \Omega \pm 5 z 1 / 4 \mathrm{~W}$ |
| R163 | RCB-AR2R2K-1 | RD25S 2.2 K J | R: FXD CAR $2.2 \mathrm{kS} \pm 52 \mathrm{l} / 4 \mathrm{~W}$ |
| R164 | RCB-AHIO-1 | RDSOS $10 \Omega \mathrm{~J}$ | R : FXD CAR $10 \Omega \pm 5 z 1 / 2 \mathrm{~N}$ |
| R165 | RCB-AE2R2X-1 | RD25S 2.2 R J | R: FXD. CAR $2.2 \mathrm{ks} \pm 5 \mathrm{z}$ 1/4W |
| R166 | RCB-AB5R6R-1 | RD25S 5.6 R | R: FXD CAR $5.6 \mathrm{kS} \pm 581 / 4 \mathrm{~W}$ |
| R167 | RCD-AF4RTK-1 | RD25S 4.7k | R: FXD CAR $4.7 \mathrm{kS} \pm 5 \mathrm{E}$ 1/4W |
| R168 | RCB-AB18K-1 | RD25S 18R J | R: FXD CAR $18 \mathrm{kS} \pm 58 \mathrm{l} / 4 \mathrm{~W}$ |
| R169 | RCB-AB18K-1 | RD25S 18K8J | R: FXD CAR $18 \mathrm{kS} \pm 5 \mathrm{z}$ 1/4 W |
| R170 | RVR-CD1 0R-2 | 3321N-1-103 | R: VAR CERMET 10 ks |
| C179 | CS4-AC100P50V-1 | 100PF 50WV | C: FXD CER $100 \mathrm{pF} \pm 10 \% 50 \mathrm{~V}$ |
| C180 | CSM-AC33P50V-1 | 33pF S0wV | C: FXD CER 33pr $\pm 102508$ |
| C181 | CMC-AC220PR3R-2 | DM15D221J3 | C: FXD DIPPED MICA $200 \mathrm{PF} \pm 52300 \mathrm{~V}$ |
| C182 | CSM-AC470P50V-1 | 470pF 50WV | C: FXD CER 470pF $\pm 102500$ |
| C183 | CSM-AC100P50V-1 | 100pF 50w | C: FXD CER $100 \mathrm{pF} \pm 10250 \mathrm{~V}$ |
| C184 | CSM-ACROIUSOV-1 | 0.010F 50wV | C: FXD CER $0.01 \mu \mathrm{~F}+80,-20250 \mathrm{~V}$ |
| C185 | CTA-AB4R7U10V-1 | 221M1002-475M | C: FXD ELECT TANTAL 4.7 $\mu \mathrm{F}+20210 \mathrm{~V}$ |
| C186 | CSM-ACRO4TOSOV-1 | 0.04 TOF 50wv | C: FXD CER 0.047uF +80, -20\% 500 |


| Parts No. | - ADVANTEST Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| C187 | CST-ACRO4 7USOV-1 | 0.04 TUF 50WV | C: FXD CER $0.047 \mu \mathrm{~F}+80,-20 \% 50 \mathrm{~V}$ |
| C188 | CTA-AC10016V-1 | 242M1602-106M | C: FED ELECT TANTAL $10 \mu \mathrm{~F}+20 \% 16 \mathrm{~V}$ |
| C189 | CSK-ACRO22U50V-1 | 0.022 VF 50WV | C: FXD CER $0.022 \mu \mathrm{~F}+80,-20 \% 50 \mathrm{D}$ |
| C190 | CFI-ABRIUSOV-1 | 501N5002-103R | C: FXD Mylar $1 \mu \mathrm{~F} \pm 10 \% 50 \mathrm{~V}$ |
| C191 | CST-ACR1U25V-1 | 0.10 F 25 WV | C: FXD CER $1 \mu \mathrm{~F}+80,-20 \% 25 \nabla$ |
| C192 | CST-ACRO1U50V-1 | 0.010 F 50WV | C: FXD CER 0.01uF +80, -20\% 50v |
| C193 | CSM-ACRO470507-1 | 0.04 TUF SOWV | C: FXD CER 0.047 $\mu \mathrm{F}+80,-20 \% 50 \mathrm{D}$ |
| C194 | CTA-AC100167-1 | 242M1602-106M | C: FXD ELECT TANTAL $108 \%$ 20\% 16 V |
| C195 | CCK-AA330U35V-1 | 357330 | C: FXD ELECT 330~F 35V |
| C196 | CTA-AAIOUSOV-1 | 111M5002-106M | C: FXD ELECT TANTAL $10 \mu \mathrm{~F} \pm 20 \%$ 50V |
| C197 | CCK-AB4 70250-1 | 25v347 | C: FXD ELECT $47 \mu \mathrm{~F} 25 \mathrm{~V}$ |
| $\begin{aligned} & \text { C198 } \\ & \text { thru } \\ & \text { C200 } \end{aligned}$ | CTA-ACIOO16V-1 | 242M1602-106M | C: FXD ELECT TANTAL $10 \mu \mathrm{~F} \pm 20 \% 16 \mathrm{~V}$ |
| C201 | CCK-AA330U35V-1 | 35T330 | G: FXD ELECT 330رF 35V |
| C202 | CCR-AA3R3D100V-1 | 100T3R3 | C: FXD ELECT 3.3 $\mu \mathrm{F}$ 100V |
| C203 | CMC-AC4 70PR3X-2 | DM15D471J3 | C: FXD DIPPED MICA 470 $\mathrm{HF} \pm 5 \% 3007$ |
| C204 | CFH-ABRO47050V-1 | 501N5002-473R | C: FXD Mylar $0.047 \mu \mathrm{~F} \pm 10 \% 50 \mathrm{~V}$ |
| C205 | CSK-ACROIU50V-1 | 0.010 F 50 W | C: FDD CER $0.01 \mu \mathrm{~F}+80,-20 \% 500$ |
| C206 | CSY-ACEO4705 OV-1 | 0.04 TUF S0WV | C: FXD CER $0.047 \mu \mathrm{~F}+80,-20 \% 50 \mathrm{~V}$ |
| C207 | CCR-AA47050V-1 | 50147 | C: FXD ELECT 47uF 50v |
| C208 thru <br> C213 | CTA-ACIUSOV-2 | 244M5002-105M | C: FXD ELECT TANTAL $1 \mu \mathrm{~F} \pm 20 \%$ SOV |
| C214 | CCR-AA1000035V-1 | 35 T 1000 | C: FXD ELECT 1000~F 35v |
| C215 | CSK-ACRO4 705 OV-1 | 0.04 TUF SOWV | C: FXD CER $0.047 \mu \mathrm{~F}+80,-20 \%$ 50v |
| C216 | CSM-ACROIU50V-1 | 0.010 F 50WV | C: FXD CER $0.01 \mu \mathrm{~F}+80,-20 \% 50 \mathrm{~V}$ |
| C217 | CSST-ACRO1U50V-1 | 0.01UF 50WV | C: FXD CER $0.01 \mu \mathrm{~F}+80,-20 \%$, 50V |
| C218 | CSM-ACR022050V-1 | 0.0220 F 50WV | C: FXD CER $0.022 \mu \mathrm{~F}+80,-20 \%$ 50V |
| C219 | CSM-ACRO22050V-1 | 0.0220F 50w | C: FXD CER $0.022 \mu \mathrm{~F}+80,-20 \%$ 50V |
| C220 | CSK-AC330P50V-1 | 330pF 50wV | C: FXD CER 330pF $\pm 10 \%$ S0V |
| CP221 | SEC-P S2001-1 | PS2001B | Photocoupler |
| CP222 | SEC-PS2001-1 | PS2001B | Photocoupler |
| J231 | JCP-AA024PX07-1 | A-1324 | Connector |
| J232 | JCS-AA064PX05-1 | FCN-365P064-AG | Connector |
| $J 233$ | JCP-AA003PX06-1 | A-1303 | Pin Comnector |
| J234 | JCP-AA003PX06-1 | A-1303 | Pin Connector |
| J235 | JCP-AA003PX05-1 | A-1103 | Pin Connector |
| J236 | JCP-AA003PX05-1 | A-1103 | Pin Connector |
|  | MBP1-10372A-1 | 401-9630A | Terminal |


| Parts No. | ADVANTEST <br> Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| IC1 | str-74.574-9 | sw/4is748 |  |
| IC2 | SIT-74issu-9 | swraLso4n | Ic: Hex Inverter Low Power |
| ic3 | sti-7453390-9 | smr/4.5390x | Ic: Dual Decade Counter Low Pover |
| IC4 | sit-74.5339-9 | swr/Lissors | Ic: Dual Decade Counter Low Power |
| ics | sit-74.574-9 | sn74is74\% | IC: Dual D-Type Positive-Edge-Triggered Flip lop with Preset AND Clear Low Power |
| ics | sx1-26501-1 | \#226501 | IC: Clock Pulse Cenerator/Controller |
| 1e7 | sti-7408-1 | 5x/4088 | IC: Quadruple 2 -Ipput Positive AsD cate |
| Ics | sit-74.573-9 | smı4L573m | IC: Dast J-k plip plop vith clear Low power |
| 199 | sti-745s166-9 | 5m44516448 | IC: 8-bit Parallel Output Serial Shift Register |
| rc10 | sit-74.57449 | sm74.5748 | IC: Dual D-Type Positive-Edge-Triggered Flip Flop with Preset AND Clear Low Power |
| rc11 | sti-74.502-9 | ssi44502x | IC: Quadruple 2-Input Positive NOR Gate Low Power |
| Ic12 | str-74.508-9 | sm74L5088 | IC: Quadruple 2-Input Positive And Gate with Open-Collector Output Low Power |
| IC13 | sit-74.505-9 | 5n74.505sm | Ic: Hex Inverter with Open-Col1ector Output |
| rc14 | sTT-74.574-9 | sm14.574m | $\begin{aligned} & \text { IC: } \text { Dual D-Type Positive-Edge-Triggered Flip } \\ & \text { Flop with Preset AND Clear Low Power }\end{aligned}$ Flop with Preset AND Clear Low Power |
| Ic15 | sit-7451388-9 | SxT4LSL3388 | Ic: 3 -to-8 Line Decoder/fut1 tipleerer Low Power |
| IC16 Tc17 | STT-744520-9 | SNT4.520\% | Ic: Dual 4-Input Positive-mand Gate Low Power |
| rc17 cc18 | SIT-74.4504-9 STT-44500-9 | Sm74.5048 |  |
| rc19 | STT-74.5S08-9 | sm74isosm | IC: Quadruple 2 -İput Positive And Gate with |
| IC20 | SIT-74.574-9 | sw/LS74M | Ic: Dasal D-Tpee Posit itee-Edge-Trizereed Fl |
| IC21 | SIT-74.550-9 | swr4isoon | ${ }_{\text {Flop with Preset And clear lou poun }}$ |
|  |  |  | Cou power |
| IC22 | STT-74LSO8-9 | Sm04.5088 | IC: Quadruple 2-Input Positive AND Gate with Open Collector Output Low Power |
| IC23 | STT-7442524 4 | smm4is244m | IC: Octal Buffer/Line Driver/ |
| rc24 | sti-74LS32-9 | sw/4L5323 | IC: Quadruple 2 -Input Positive or Gate Low Power |
| rc25 | sti-74LSL183-9 | sm74IS1388 | IC: 3 -to-8 Line Decoder/Aulutiplexer Low Power |
| rc26 | sst-7442844-9 | sn/4is244\% | IC: Octal Buffer/Line Driver/ |
| ${ }^{\text {r } 227}$ | STM-6800-3 | ${ }^{\text {mp8661 }}$ | IC: 8-bit Mciroprocessor |
| ic28 | SIT-74is00-9 | swr4iscoon | IC: Quadruple 2 -Input Positive NAND Gate Low Pover |
| IC29 | sit-74LS10-9 | swr4LSIION | Ic: Triple 3-Input Positive-Maid Gate Low Pover |
| Ic30 | ${ }_{\text {STIT-602-1 }}$ | ${ }^{\text {Tr64022PL }}$ | IC: Jniversal Asychronous Receiver/Transmitter |
| rc31 | STT-74L25244-9 | sN/4LS2444 | IC: Octal Buffer/Line Driver/ <br> Low Power |
| ${ }_{\text {IC32 }}$ | stx-74LSL138-9 | ST1/LSI389 | IC: 3 -to-8 Line Decoder//sultiplerer Low Power |
| rc33 rc34 |  |  | Ic: 3 -to-8 Line Decode//Kul1iplexer Low Power |
| Tc35 | str-7442244-9 | sw74L5244, |  |
| tc36 | sst-7445244-9 | SNT/LS | IC: Octal Buffer/Line Driver/ ine Receiver Low Power |


| Parts No． | ADVANTEST Stock No． | Mfr Stock No． | Description |
| :---: | :---: | :---: | :---: |
| IC37 | SIT－74LS390－9 | SN74LS390N | IC：Dual Decade Counter Low Power |
| IC38 | ST T－74LS74－9 | SN74LS74N | IC：Dual D－Type Positive－Edge－Triggered Flip Flop with Preset AND Clear Low Power |
| IC39 | STA－555－7 | HA17555PS | IC：Timer |
| IC40 | SIT－74LS00－9 | SN74LS00n | IC：Quadruple 2－Input Positive NAND Gate Low Power |
| IC41 | SIT－74LSO4－9 | SN74LSO48 | IC：Hex Inverter Low Power |
| IC42 | SIT－74L S244－9 | SN74LS244N | IC：Octal Buffer／Line Driver／ Line Receiver．Low Power |
| IC43 | SIT－74LS244－9 | SN74LS244N | IC：Cetal Buffer／Line Driver／ Line Receiver Low Power |
| Q51 | STR－2SC1815－15 | 2SC1815GR | Transistor SI NPM |
| D56 | SDS－15953－1 | 15953 | Diode SI |
| $\begin{aligned} & \text { R61 } \\ & \text { thru } \\ & \text { R63 } \end{aligned}$ | RAY－AA10K4－1 | T4R4－103 | R：FXD COM $10 \mathrm{k} \Omega$ |
| R64 | RAY－AA22K4－1 | T3184－223 | R：FXD COM $22 \mathrm{k} \Omega$ |
| 865 | RAY－AA22K4－1 | TMR4－223 | R：FXD Con 22 bo |
| R66 | RCB－AB1R－1 | RD25S 1RSJ | R：FXD CAR $1 \mathrm{kR} \pm 57 \mathrm{l} / 4 \mathrm{~W}$ |
| R67 | RCP－AE470－1 | RD25S 4708J | R：FXD CAR $470 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| 268 | RCB－AB560K－1 | Rd25S 560kJ | R：FXD CAR $560 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R69 | RCB－AF4RTK－1 | RD25S 4．7R8J | R：FXD CAR $4.7 \mathrm{lor} \pm 55 \mathrm{l} / 4 \mathrm{~W}$ |
| R70 | RCB－AB1X－1 | RD25S 1 RJ | R：FXD CAR $1 \mathrm{kR} \pm 5 \mathrm{~L}$ 1／4W |
| 871 | RCE－AB6R8K－1 | RD25S 6．8K8J | R：FXD CAR $6.8 \mathrm{kR} \pm 5 \mathrm{z}$ 1／4W |
| R72 | RCB－ABIR－1 | RD25S 1 R J ${ }^{\text {J }}$ | R：FXD CAR $1 \mathrm{kS} \pm 5 \mathrm{z}$ 1／4W |
| R73 | RCb－All $00-1$ | RD25S 1008 | R：FXD CAR $100 \Omega \pm 5 \%$ 1／4W |
| R74 | RCB－AH10x－1 | RD25S 10RS | R：FXD CAR $10 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R75 | RCB－AF470－1 | RD25S 4708 | R：FXD CAR $470 \Omega \pm 5 \% \mathrm{l} / 4 \mathrm{~W}$ |
| C81 | －CSK－AC220P50才－1 | 220pf 50wt | C：FXD CER $220 \mathrm{pF} \pm 102507$ |
| C82 | CSY－AC330P5 OV－1 | 330pr 50wv | C：FKD CER 330pF $\pm 102507$ |
| C83 | CRM－ARR022050V－1 | 501N5002－223x | C：FXD Mylar 0．022uF $\pm 102508$ |
| C84 | CSH－ACROIUS OV－1 | 0．010F 50wv | C：FXD CER 0.01 隹 $+80,-20250 \mathrm{~V}$ |
| C85 | CSM－AC22OP $50 \mathrm{O}-1$ | 220pp 50wv | C：FXD CER 220pF $\pm 10 \% 507$ |
| $\begin{aligned} & \text { C86 } \\ & \text { thru } \\ & \text { C94 } \end{aligned}$ | CTA－AC1050才－2 | 244M5002－105M | C：FXD Elect tantal 1 mF $\pm 202$ 500 |
| C95 | CTA－AC100160－1 | 242M1602－106M | C：FXD ELect tantal $100 \mathrm{~F} \pm 202160$ |
| C96 <br> thru C103 | CTA－AC10500－2 | 244M5002－105M | C：FXD Elect tantal $14 \mathrm{~F} \pm \mathbf{2 0 \%} 500$ |
| C104 | CTA－AB4RTO10V－1 | 221M 002－475M | C：FXD Elect tantal 4.7 \％$\pm 20 \% 100$ |
| $\begin{aligned} & \text { c105 } \\ & \text { thru } \\ & \text { c108 } \end{aligned}$ | CTA－AC105OV－2 | 244M5002－105M | C：FXD ELect tantal $14 \mathrm{~F} \pm 202500$ |
| C109 | CTA－AC10016V－1 | 242M1 602－106M | C：FXD Elect tantal 10wf $\pm 202160$ |
| C110 | CTA－AC1OS OV－2 | 244M5002－105M | C：FXD ELECT TANTAL $10 \mathrm{~F}+20 \% 50 \mathrm{~V}$ |
| C111 | CTA－AC1OU16V－1 | 242M1 602－106M | C：FXD ELect tantal 10\％F $\pm 202160$ |
| X121 | DXD－000449－1 | xu－105 | Crystal |
| S132 | RSA－000269－1 | 435166－3 | Switch |


| Parts No. | ADVANTEST Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| J137 <br> J138 <br> $J 139$ <br> J140 <br> J141 <br> 6112 <br> C113 <br> c114 <br> c115 | JCP-AAOO 3PXO6-1 JCP-AA003PX06-1 JCP-AA003PX05-1 JCP-AA003PX05-1 JCS-AA064PX05-1 JCI-AD040JXO1-2 MBM-10372A-1 <br> CIM-BJ20P-CYC-AB20PR5K-6 CMC-AB3PR5R-2 CMC-AB6PR5K-6 | A-1303 <br> A-1303 <br> A-1303 <br> A-1303 <br> FCN-365P064-AG <br> DL2-40A <br> 401-9630A <br> ECV-12W20X40 <br> DM10C200R5 <br> DM1 0C030D5 <br> DM10C060K5 | Pin Connector <br> Pin Connector <br> Pin Connector <br> Pin Connector <br> Connector <br> IC Socket <br> Terminal <br> C: VAR CER 20 P <br> C: FXD DIPPED MICA 20pF $\pm 5 \%$ 500V <br> C: FXD DIPPED MICA 3pF $\pm 5 \% 500 \mathrm{~V}$ <br> C: FXD DIPPED MICA 6pF $\pm 5 \% 500 \mathrm{~V}$ |


| Parts No. | ADVANTEST Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| IC1 | SIT-74LS175-9 | SN74LS175N | IC: Quad D-Type flip Flop Low power |
| IC2 | STM-6821-2 | HD46821P | IC: Peripheral Interface Adaptor |
| IC3 | SLP4-5514A-1 | TC5514AP-2 | IC: 4x bit osos ram |
| IC4 | SMM-5514A-1 | TC5514AP-2 | IC: 4X bit OSOS RAM |
| ICs | SMM-2114-8 | HM472114P-4 | IC: 4x bit Static RaM |
| IC6 | SMM-2114-8 | HM472114P-4 | IC: 4x bit Static RAM |
| IC7 | SIT-74LS30-9 | SN74LS30N | IC: 8 -Input Nasd Gate Low Power |
| IC8 | SIT-74LS138-9 | SN74LS138N | IC: Decoder/Demultiplexer Low Power |
| IC9 | SIM-4020-1 | TC4020BP | IC: 14-Stage Binary Counter |
| IC10 | SxM-5514A-1 | TC5514AP-2 | IC: 4 X bit OMOS RAM |
| IC11 | Ster-5514A-1 | TC5514AP-2 | IC: 4 X bit CMOS RaM |
| IC12 | SMM-2114-8 | HM472114P-4 | IC: 4 x bit Static RAM |
| IC13 | Smat-2114-8 | HM472114P-4 | IC: 4 X bit Static RAM |
| IC14 | SIT-74LS00-9 | SN74Lsoon | IC: Quadruple 2 -Input NaND Gate Low Power |
| IC15 | SIT-74LS00-9 | SN74LSOON | IC: Quadruple 2-Input Nand Gate Low Power |
| IC16 | SIT-74IS241-9 | SN74LS241N | IC: Octal Buffer/Line Driver/ Line Receiver Low Power |
| IC17 | SITM4020-1 | TC40208P | IC: 14-Stage Binary Counter |
| IC18 | SIM-4001-1 | TC40018P | IC: Quad 2-Input Positive NOR Gate |
| IC19 | SIM-4011-1 | TC40118P | IC: Quad 2-Input Positive nand gate |
| IC20 | STM-2114-8 | HM472114P-4 | IC: 4x bit Static Ram |
| IC21 | STM-2114-8 | HM472114P-4 | IC: 4X bit Static RAM |
| IC22 | SIT-74LS04-9 | SN74LS04N | IC: Hex Inverter Low Power |
| IC23 | SIT-74LS04-9 | SN74LS08N | IC: Hex Inverter Low Power |
| IC24 | SIT-74LS04-9 | SN74LS08N | IC: Hex Inverter Low Power |
| IC25 | SIM4020-1 | TC4020BP | IC: 14-Stage Binary Counter |
| IC26 | SIM4069-1 | TC40690BP | IC: Hex Inverter |
| IC27 | SIT-74LS245-9 | SN74LS245N | IC: Octal bus Transceiver Low power |
| IC28 | SMM-2114-8 | HM472114P-4 | IC: 4 K bit Static RAM |
| IC29 | STM4-2114-8 | HM472114P-4 | IC: 4 x bit static RAM |
| IC30 | SIT74TS138-9 | SN74LS138N | IC: Decoder/Demultiplexer Low Power |
| IC31 | SIT74LS138-9 | SN74LS138N | IC: Decoder/Demultiplexer Low Power |
| IC32 | SIT-74LS04-9 | SN74LS04N | IC: Hex Inverter Low Power |
| IC33 | SIT74LS244-9 | SN74LS244M | IC: Octal Buffer/Line Driver/ Line Receiver Low Power |
| IC34 | SIT-74LS244-9 | SN74LS244N | IC: Octal Buffer/Line Driver/ Line Receiver Low Power |
| IC35 | SIS-000442A |  | IC: 64 K bit UV EPROM |
| IC36 | SIS-000443 |  | IC: 64 R bit OV EPROM |
| IC37 | SIS-000444 |  | IC: 64 X bit UV EPROM |
| IC38 | SIS-000445 |  | IC: 64R bit OV EPROM |
| IC39 | SIS-000446 |  | IC: 64 K bit UV EPROM |
| IC40 | SIS-000447A |  | IC: 64R bit OV EPROM |
| $\begin{aligned} & \text { IC41 } \\ & \text { thru } \\ & \text { IC44 } \end{aligned}$ |  |  | Not assigned |
| Q51 | STN-2SC1815-15 | 2SC1815GR | Transistor SI NPN |
| $\begin{aligned} & \text { D61 } \\ & \text { thru } \\ & \text { D64 } \end{aligned}$ | NLD-000020-1 | SLP-24B | Light Emitting Diode |


| Parts No. | ADVANTEST Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| D65 | SDS-15953-1 | 15953 | Diode SI |
| R71 | RAY-AA470Q4-1 | TMR4-471 |  |
| R72 | RAY-AA10R4-1 | TMR4-103 | R: FXD COM 10 kR |
| R73 | RAY-AAl OR4-1 | TMR4-103 | R: FXD COM 10 kS |
| 874 | RCB-AN220-1 | RD25S-2208 | R: FAD CAR $220 \Omega \pm 5 \%$ 1/4W |
| R75 | RCB-ABl OK-1 | RD25S 10\%8J | R: FID CAR $10 \mathrm{kS} \pm 5 \% \mathrm{l} / 4 \mathrm{~W}$ |
| R76 | RCB-ABIOK-1 | RD25S 10R8J | R: FXD CAR $10 \mathrm{kR} \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R77 | RCB-AE1 5R-1 | RD25S 15RתJ | R: FXD CAR $15 \mathrm{kS} \pm 5 \mathrm{~F}$ 1/4 W |
| R78 | RCB-AB220K-1 | RD25S 220RSJ | R: FDD CAR $220 \mathrm{kS} \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R79 | RCB-AH1 OK-1 | RD25S 10kRJ | R: FXD CAR $10 \mathrm{kS} \pm 5 \% 1 / 4 \mathrm{~N}$ |
| 880 | RCB-ABI OK-1 | RD25S 10keJ | R: FXD CAR $10 \mathrm{kS} \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R81 | RCB-AHI50K-1 | RD25S 150kSJ | R: FXD CAR $150 \mathrm{k} \Omega+5 \% \mathrm{l} / 4 \mathrm{~N}$ |
| R82 | RCB-AHI OK-1 | RD25S 10kSJ | R: FXD CAR 10 k ¢ $\pm 5 \% 1 / 4 \mathrm{~N}$ |
| R83 | RCB-AB22\%-1 | HM 1/2 $22 \mathrm{M} \Omega \mathrm{J}$ | R: FXD CAR $22 \mathrm{MR} \pm 5 \%$ 1/2W |
| R84 | RCB-AB4R7K-1 | RD25S 4.7R8J | R: FXD CAR $2.7 \mathrm{k} \Omega+5 \% 1 / 4 \mathrm{~W}$ |
| R85 | RCB-AB10K-1 | RD25S lokg | R: FXD CAR $10 \mathrm{kS} \pm 5 \% 1 / 4 \mathrm{~N}$ |
| C96 | CSEA-AC330P50V-1 | 330PF 50WV | C: FXD CER 330pr $\pm 10 \% 50 \mathrm{D}$ |
| C97 | CSM-AC33P50V-1 | 33PF 50WV | C: FXD CER 33pr $\pm 10 \%$ 50V |
| C98 | CSK-AC33P5OV-1 | 33PF 50W\% | C: FXD CER 33pF $+10 \%$ 50V |
| C99 | CTA-AC1050V-4 | TA-OSOTN1RO-P | C: FED ELECT TANTAL $1 \mu \mathrm{~F}+100,-0 \% 50 \mathrm{~V}$ |
| $\begin{aligned} & \text { C100 } \\ & \text { thru } \\ & \text { C106 } \end{aligned}$ | CTA-ACIDSOV-2 | 244M5002-105M | C: FXD ELECT TANTAL 14 F + $20 \% 50 \mathrm{~V}$ |
| C107 | CTA-AC100168-1 | 242M1602-106M | C: FXD ELECT TANTAL $10 \mu \mathrm{~F} \pm \mathbf{2 0 \%} 160$ |
| C108 thru Cl12 | CTA-ACIUSOV-2 | 244M5002-105M | C: FXD Elect tantal $1 \mu \mathrm{~F}+80,-20 \%$ S0V |
| C113 | CTA-AC2R2U35V-1 | 242M3502-225M | C: FXD ELECT TANTAL $2.2 \mu \mathrm{~F}+20 \%$ 35V |
| C114 | CCX-AA4701 0V-1 | 10 T 47 | C: FXD ELECT $47 \mu \mathrm{~F} 108$ |
| C115 | CTA-AC100168-1 | 242M1602-106M | C: FXD ELECT tantal 10\%F $\pm 207$ 16V |
| C116 thru Cl19 | CTA-AC1050V-2 | 244M5002-105M | C: FXD ELECT TANTAL $1 \mu \mathrm{~F} \pm 20 \% 50 \mathrm{~V}$ |
| C120 | CTA-AC100168-1 | 242M1602-106M | C: FXD Elect tantal 10\%F $\pm 20 \% 16 \mathrm{~V}$ |
| $\begin{aligned} & \text { C121 } \\ & \text { thru } \\ & \text { C125 } \end{aligned}$ | CTA-ACLUSOV-2 | 244M5002-105M | C: FXD. ElECT TANTAL $1 \mu \mathrm{~F} \pm 20 \%$ S0V |
| X131 | DXD-000448-1 | XU-104 | Crystal |
| $J 136$ | JCS-AA064PXO5-1 | FCN-365P064-AG | Connector |
| $\begin{aligned} & \text { J137 } \\ & \text { thru } \\ & \text { J140 } \end{aligned}$ | JCS-AA003PX05-1 | A-1103 | Pin Connector |
| L146 | $\begin{aligned} & \text { LCL-T00084-1 } \\ & \text { MBM-10372A-1 } \end{aligned}$ | $\begin{aligned} & \text { LT-3 } \\ & 401-9630 \mathrm{~A} \end{aligned}$ | L: FXD Coil Terminal |

TR2731
PANEL
BIJ-010161

| Parts No. | ADVANTEST Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| IC1 | SIT-74LS138-9 | SN74LS138N | IC: Decoder/Demultiplexer Low Power |
| $\begin{aligned} & \text { IC2 } \\ & \text { thru } \\ & \text { IC6 } \end{aligned}$ | SIT-6118-1 | UDN-6118A | IC: Voltage Driver |
| IC7 | SIM-8279-5 | UPD8279C-5 | IC: Programmable Reyboard/Display Controller |
| IC8 | SIT-74LS240-9 | SN74LS240N | IC: Octal Buffer/Line Driver/ <br> Line Receiver Low Power |
| IC9 | STM-4028-1-1 | TC4028BP | IC: BCD to Decimal Decoder |
| IC10 | SIT-6118-1-1 | UDN-6118A | IC: Voltage Driver |
| IC11 |  |  | Not Assigned |
| IC12 |  |  | Not Assigned |
| IC13 | SIT-74LS08-9 | SN74LSO8N | IC: Quadruple 2-Input Positive AND Gate Low Power |
| IC14 | SIT-74LS00-9 | SNT4LSOON | IC: Quadruple 2-Input Positive NAND Gate Low Power |
| IC15 | SIT-74LSOS-9 | SN74LSO5N | IC: Hex Inverter with Open-Collector Output Low Power |
| IC16 | SIT-74LS74-9 | SN74LS74N | IC: Dual D-Type Positive-Edge-Triggered Flip Flop with Preset AND Clear |
| IC17 | SIT-74LS04-9 | SN74LSO4N | IC: Hex Inverter Low Power |
| IC18 | SIT74LS138-9 | SN74LS138N | IC: Decoder/Demultiplexer Low Power |
| IC19 | SIT-74LS393-9 | SN74LS393N | IC: Dual 4-bit Binary Counter Low Power |
| IC20 <br> thru <br> IC24 | SIT-74LS374-9 | SN74LS374N | IC: Octal D-Type Flip Flop Low Power |
| IC25 | SIT-6118-1 | UDN-6118A | IC: Voltage Driver |
| IC26 | STM-4828-1 | TC4028BP | IC: BCD to Decimal Decoder |
| $1 C 27$ | SIT-74LS244-9 | SN74LS244N | IC: Octal Buffer/Line Driver/ Line Receiver Low Power |
| Q31 | STN-2SC1815-15 | 2SC1815GR | Transistor SI NPM |
| Q32 | STN-2SC1173-1 | $2 \mathrm{SC1173}$ | Transistor SI NPN |
| Q33 |  |  |  |
| $\begin{aligned} & \text { thru } \\ & \text { Q37 } \end{aligned}$ | STP-2SA695-1 | 2SA695 | Transistor SI PNP |
| D41 | SDS-15953-1 | 15953 | Diode SI |
| RS1 | RAY-AA2R2R6-1 | TMR6-222 | R: FXD COM 2.2 kS |
| R52 | RAY-AAI OR6-1 | TMR6-103 | R: FXD COM $10 \mathrm{k} \Omega$ |
| R53 <br> thru <br> R60 | RCB-AH120-1 | RD25S 1208J | R: FXD CAR $120 \Omega+5 \% 1 / 4 \mathrm{~W}$ |
| R61 <br> thru <br> R65 | RCB-AE820-1 | RD25S 820§ | R: FXD CAR $820 \Omega \pm 5 \%$ 1/4N |
| R66 | RCB-AHIOK-1 | RD25S 10 K | R: FXD CAR $10 \mathrm{k} \Omega \pm 57 \mathrm{l} / 4 \mathrm{~W}$ |
| R67 | RCB-ARIX-1 | RD25S 1k | R: FXD CAR 1 k ( $\pm 5 \% 1 / 4 \mathrm{~W}$ |
| R68 | RCB-AH1 OX-1 | RD25S 10KRJ | R: FXD CAR $10 \mathrm{kR} \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R69 | RCB-AH4RTK-1 | RD25S 4.7RתJ | R: FXD CAR $4.7 \mathrm{kS} \pm 5 \%$ 1/4W |
| C81 | CTA-AC10016V-1 | 242M1602-106M | C: FXD Ellect tantal 10uF $\pm 20 \% 16 \mathrm{~V}$ |
| C82 | CST-AC1000P50V-1 | 0.0010 F 50WV | C: FXD CER 1000pF +80, -20\% 50v |
| C83 | CTA-AC10016V-1 | 242M1602-106M | C: FXD ELECT TANTAL $10 \mu \mathrm{~F} \pm 20 \% 167$ |
| C84 | CTA-AAIOUS OV-1 | 111M5002-106M | C: FXD ELECT TANTAL $10 \mu \mathrm{~F} \pm 20 \%$ 50V |
| C85 | CTA-AALOUSOV-1 | 111M5002-106M | C: FXD ELECT TANTAL $10 \mu \mathrm{~F} \pm 20 \%$ S0V |




TR2730-010
MEMORY/AUX, FUNC
BGJ-010169



| Parts No. | ADVANTEST Stock No. | Mifr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| IC1 | SIT-74LS138-9 | SN74LS138N | IC: 3-to-8 Line Decoder/Multiplexer Low Power |
| IC2 | SIT-74LS08-9 | SN74LS08N | IC: Quadruple 2-Input Positive AND Gate Low Power |
| IC3 | SIT-74LS14-9 | SN74LS14N | IC: Hex Schmitt-Trigger Inverter Low Power |
| IC4 | SIT-74LS74-9 | SN74LS74N | IC: Dual D-Type Positive-Edge-Triggered Flip Flop with Preset AND Clear Low Power |
| ICS | SIT-7406-2 | HD7406P | IC: Hex Inverter Buffer/Driver with Open-Collector High-Voltage Output |
| IC6 | SIT-74LS123-9 | SN74LS1238 | IC: Dual Retriggerable Monostable Multivibrator with Clear Low Power |
| IC7 | SIT-74LS00-9 | SN74LSOON | IC: Quadruple 2-Input Positive NAND Gate Low Power |
| IC8 | SIT-74LS123-9 | SN74LS123N | IC: Dual Retriggerable Monostable Multivibrator with Clear Low Power |
| IC9 | SIT-74LS74-9 | SN74LS74N | IC: Dual D-Type Positive-Edge-Triggered Flip Flop with Preset AND Clear Low Power |
| IC10 | SIT-74LS244-9 | SN74LS244N | IC: Octal Buffer/Line Driver/ Line Receiver Low Power |
| IC11 | SIT-74LS14-9 | SIT-74LSI4N | IC: Hex Schmitt-trigger Inverter Low Power |
| IC12 | SIT-74LS74-9 | SIT-74LS74N | IC: Dual D-Type Positive-Edge-Triggered Elip Flop with Preset AND Clear Low Power |
| IC13 | SIT-74LS244-9 | SIT-74LS244N | IC: Octal Buffer/Line Driver/ Line Receiver Low Power |
| IC14 | SIT-74LS74-9 | SN74LS74N | IC: Daal D-Type Positive-Edge-Triggered Flip Flop with Preset AND Clear Low Power |
| IC15 | SIT-74LS244-9 | SN74LS244N | IC: Octal Buffer/Line Driver/ <br> Line Receiver Low Power |
| IC16 | SIT-74LS138-9 | SN74LS138N | IC: 3-to-8 Line Decoder/Multiplexer Low Power |
| IC17 | SIT-74LS244-9 | SN74LS244N | IC: Octal Buffer/Line Driver/ <br> Line Receiver Low Power |
| IC18 <br> thru <br> IC23 | SIT-74LS374-9 | SN74LS374N | IC: Octal D-type Flip Flop Low Power |
| R41 | RCB-AHIO-1 | RD25S 10KRJ | R: FXD CAR $10 \mathrm{k} \Omega \pm 5 \%$ 1/4W |
| R42 | RCB-AH330-1 | RD25S 3308J | R: FXD CAR 330 \& $\pm 5 \% 1 / 4 \mathrm{~W}$ |
| 843 | RCB-AH22K-1 | RD25S 22\% J | R: FXD CAR $22 \mathrm{k} \Omega \pm 5 \%$ 1/4W |
| R44 | RCB-AH15R-1 | RD25S 13K8J | R: FXD CAR $15 \mathrm{k} \Omega \pm 5 \% \mathrm{l} / 4 \mathrm{~W}$ |
| 845 | RCB-AH22X-1 | RD25S 22KRJ | R: FXD CAR $22 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R46 <br> thru <br> R52 | RCB-AR470-1 | RD25S 4708J | R: FXD CAR $470 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R53 <br> thru <br> RS5 |  |  | Not assigned |
| R56 | RAY-AA4R7K6-1 | TMR6-472 | R: FXD COM $4.7 \mathrm{k} \Omega$ |
| $\begin{aligned} & \mathrm{R} 57 \\ & \text { thru } \\ & \text { R60 } \end{aligned}$ | RAY-AA4R7K4-1 | TMR4-472 | $\mathrm{R}: ~ F \mathrm{FDD} \mathrm{COM} 4.7 \mathrm{k} \Omega$ |
| C66 | CTA-AC10U16V-1 | 242M1 602-106M | C: FXD ELECT TANTAL $10 \mu \mathrm{~F} \pm 20 \% 16 \mathrm{~V}$ |
| C67 | CIA-ACIUSOV-2 | 244M5002-105M | C: FXD ELECT TANTAL $1 \mu \mathrm{~F} \pm 20 \% 50 \mathrm{~V}$ |
| C68 | CTA-ACIUSOV-2 | 244M5002-105M | C: FXD ELECT TANTAL $1 \mu \mathrm{~F} \pm 20 \% 50 \mathrm{~V}$ |
| C69 | CTA-ACR1U35V-1 | 242M3502-104M | C: FXD ELECT TANTAL $1 \mu \mathrm{~F} \pm 20 \% 35 \mathrm{~V}$ |
| 670 | CTA-ACIU50V-2 | 244M5002-150M | C: FXD ELECT TANTAL $1 \mu \mathrm{~F} \pm 20 \% 50 \mathrm{~V}$ |
| C71 | CTA-AC1OU1 6V-1 | 242M1602-106M | C: FXD ELECT TANTAL $10 \mu \mathrm{~F} \pm 20 \% 16 \mathrm{~V}$ |



| Parts No. | ADVANTEST Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| ICI | SIT-74LS20-9 | SN74LS20N | IC: Dual 4-Input Positive-NAND Gate Low Power |
| IC2 | SIT-74LS125-9 | SN74LS125N | IC: Quadruple bus Buffer Gate with three-state Output Low Power |
| IC3 | SIT-74LS138-9 | SN74LS138N | IC: 3-to-8 Line Decoder/Multiplexer Low Power |
| IC4 | SIT-74LSI38-9 | SN74LS138N | IC: 3-to-8 Line Decoder/Multiplexer Low Power |
| ICS | SIT-74LS74-9 | SN74LS74N | IC: Dual D-Type Positive-Edge-Triggered Flip Flop with Presct find Clear |
| IC6 | SIT-74LS138-9 | SN74LS1388 | IC: 3-to-8 Line Decoder/Multiplexer Low Power |
| IC7 | SIT-74LS32-9 | SN74LS32\% | IC: Quadruple. 2-Input Positive-OR Gate Low Power |
| IC8 | SIT-7406-2 | HD7406P | IC: Hex Inverter Buffer/Driver with Open-Collector Eigh Voltage Output |
| IC9 | SIT-74LSL23-9 | SN74LS123N | IC: Dual Retriggerable Monostable Multivibrator with Clear Low Power |
| IC10 | SIT-74LS244-9 | SN74LS244N | IC: Octal Buffer/Line Driver/ Line Receiver Low Power |
| IC11. | SIM-5012-1 | TC5012BP | IC: 3-state NON-Inverting Buffer |
| IC12 | SIM-5012-1 | TC5012BP | IC: 3-state NON-Inverting Buffer |
| IC13 | SIT-74LS244-9 | SN74LS244N | IC: Octal Buffer/Line Driver/ Line Receiver Low Power |
| IC14 <br> thrus <br> IC19 | SIM-5012-1 | TC5012BP | IC: 3-state NON-Inverting Buffer |
| D26 <br> thru <br> D33 | SDS-A54-1 | UPA54 | Diode SI |
| D34 <br> thrus <br> D41 | SDS-A64-1 | UPA64 | Diode SI |
| R46 | RCB-AH4R7K-1 | RD25S 4.7KתJ | R: FXD CAR $4.7 \mathrm{k} \Omega \pm 5 \% \mathrm{l} / 4 \mathrm{~W}$ |
| R47 | RCB-AH4R7K-1 | RD25S 4.7Rת | R: FXD CAR $4.7 \mathrm{kS} \pm 5 \%$ 1/4W |
| R48 | RCB-AF10R-1 | RD25S 10\% J | R: FXD GAR $10 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R49 | RCB-AE4 7 TK-1 | RD25S 478 | R: FXD CAR $47 \mathrm{k} \Omega \pm 5 \% \mathrm{l} / 4 \mathrm{~W}$ |
| $\begin{aligned} & \text { R50 } \\ & \text { thru } \\ & \text { R73 } \end{aligned}$ | RCB-AB1 5 R-1 | RD25S 15R | R: FXD CAR $15 \mathrm{kS} \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R74 | RCB-AH1R2K-1 | RD25S 1.2KJ | R: FXD CAR $1.2 \mathrm{kS} \pm 5 \% \mathrm{~F} / 4 \mathrm{~W}$ |
| R74 <br> thru <br> R96 | RCB-AH15R-1 | RD25S 15K8 | R: FXD GAR $15 \mathrm{kS} \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R97 | RCB-AH3R3R-1 | RD25S 3.3R8J | R: FXD CAR $3.3 \mathrm{kS} \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R98 | RCB-AH4RTK-1 | RD25S 4.7KתJ | R: FXD CAR $4.7 \mathrm{kS} \pm 5 \% \mathrm{l} / 4 \mathrm{~W}$ |
| R99 |  |  | Not assigned |
| R100 |  |  | Not assigned |
| R101 | RAY-AAI 0K6-1 | TMR6-103 | R: FXD COM 10 ks |
| R102 | RAY-AA68R6-1 | TMR6-683 | R: FXD COM $68 \mathrm{k} \Omega$ |
| R103 | RAY-AA68R6-1 | TMR6-683 | R: FXD COM $68 \mathrm{k} \Omega$ |
| R104 | RAY-AAI OR6-1 | TMR6-103 | R: FXD COM $10 \mathrm{k} \Omega$ |
| R105 <br> thru <br> R110 | RAY-AA68R6-1 | TMR6-683 | $\mathrm{R}: \mathrm{FXD} \mathrm{COM} 68 \mathrm{k} \Omega$ |
| C116 | CTA-AC100168-1 | 242M1602-106M | C: FXD ELECT TANTAL $10 \mu \mathrm{~F} \pm 20 \% 16 \mathrm{~V}$ |
| $\begin{aligned} & \text { C117 } \\ & \text { thru } \\ & \text { C120 } \end{aligned}$ | CTA-ACIUSOV-2 | 244M5002-105M | C: FXD ELECT TANTAL $1 \mu \mathrm{~F} \pm \mathbf{2 0 \%} 50 \mathrm{~V}$ |
|  |  |  | BGJ -010172 1/2 |



TR2730-540
relay outpot
BGJ-010173

| Parts No. | ADVANTEST Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| IC1 | SIT-74LS138-9 | SN74LS138N | IC: 3-to-8 Line Decoder/Multiplexer Low Power |
| IC2 | SIT-74LS 138 | SN74LS 138 N | IC: 3-to-8 Line Decoder/Multiplexer Low Power |
| IC3 | SIT-74LS20-9 | SN74LS20N | IC: Dual 4-Input Positive-nand gate Low power |
| IC4 | SIT-74LS32-9 | SN74LS32N | Ic: Quadruple 2 -Input Positive or gate Low power |
| ics | SIT-74LS138-9 | SN74[S1384 | IC: 3-to-8 Line Decoder Multiplexer Low Power |
| Ic6 | SIT-74LS00-9 | SN74LSoon | IC: Quadruple 2-Input Positive-NAND Gate Low Power |
| IC7 | SIT-74LS244-9 | SN74[S244N | IC: Octal Buffer/Line Driver/ Line Receiver Low Power |
| гев | SIT-74isi23-9 | S874[S123N | IC: Dual Retriggerable Monostable Multivibrator with Clear Low Power |
| ге9 | sIT-745S125-9 | SN74[S125N | IC: Quadruple bus Buffer Gate with three-state Output Low Power |
| re10 | SIT-74[S244-9 | Sm74[S244N | IC: Octal Buffer/Line Driver/ Line Receiver Low Power |
| IC11 | SIT-74LS374-9 | SN74LS374N | TC: Octal d-Type Plip flop Low Powe |
| IC13 |  | SNT40334 | 1c: Octal d-hype hip hop tow Rower |
| $\mathrm{R}_{21}$ | RAY-AA1086-1 | trR6-103 | R: FXD Com 10 kR |
| R22 | RCB-AR150K-1 | RD25S 150xa | R: PXD CAR $150 \mathrm{kR} \pm 581 / 4 \mathrm{~W}$ |
| ${ }_{\text {charu }}^{\text {c29 }}$ | CTA-AClusov-2 | 244M5002-105M |  |
| C31 |  |  |  |
| ${ }^{\text {c32 }}$ | CTA-AC2R2035V-1 | 24243502-225 | C: Pxd Eibct tantai $2.24 \mathrm{~F}=20835 \mathrm{~V}$ |
| C33 | CTA-AC10016v-1 | 242M1602-106M | C: FXD EIECT TANTAL $104 \mathrm{~F} \pm 20816 \mathrm{~V}$ |
| $\begin{aligned} & \text { C34 } \\ & \text { thru } \\ & \text { C38 } \end{aligned}$ | CTA-AC1050v-2 | 244M5002-105M | C: Pxd EIECT TANTAL 14 P 208 50 V |
| $\begin{aligned} & \text { K61 } \\ & \text { Khru } \\ & \text { K881 } \end{aligned}$ | KRR-000276-2 | RRDS 1 A0SD | Reed Relay |
| s91 | KSL-000142-1 | SL83-7810-2-3 | Switch |
| 592 | KSA-000689-1 | 7-171474-4 | Switch |
| 5101 | JCS-ACOSOJX03-1 | 57-40500-D39 | Connector |
|  |  | 401-9630A | Terminal |


| Parts No. | ADVANTEST Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| ICI | SIT-74LS138-9 | SN74LS138N | IC: 3-to-8 Line Decoder/Multiplexer Low Power |
| IC2 | SIT-74LS138-9 | SN74LS1388 | IC: 3-to-8 Line Decoder/Multiplexer Low Power |
| IC3 | SIT-74LS244-9 | SN74LS244N | IC: Octal Buffer/Line Driver/ <br> Line Receiver Low Power |
| IC4 | SIT-74LS86-9 | SN74LS86N | IC: Quadruple 2-Input Exclusive-OR Gate Low Power |
| ICS | SIT-74LS74-9 | SN74LS74N | IC: Dual D-Type Positive-Edge-Triggered Flip Flop with Preset AND Clear Low Power |
| IC6 | SIT4-4518-1 | TC4518BP | IC: Dual BCD up Counter |
| IC7 | SIT-74LS00-9 | SN74LS00N | IC: Quadruple 2-Input Positive NAND Gate Low Power |
| IC8 | SIT-74LS161-9 | SNT4LS161N | IC: Synchronous 4-bit Counter Low Power |
| IC9 | SIT-74LS123-9 | SN74LS123N | IC: Dual Retriggerable Monostable Multivibrator with Clear Low Power |
| IC10 | SIT-74LS74-9 | SN74LS74N | IC: Dual D-Type Positive-Edge-Triggered Flip Flop with Preset AND Clear Low Power |
| ICII | SIT-7406-2 | HD7406P | IC: Hex Inverter Buffer/Driver with Open-Collector High Voltage Output |
| IC12 | SIT-74LS08-9 | SN74LS08N | IC: Quadruple 2-Input Positive AND Gate Low Power |
| IC13 | SIA-4066-1 | TC4066BP | IC: Quad Bilateral Switch |
| IC14 | SIT-TL06-1 | TL062CP | IC: Dual Operational Amplifier |
| IC15 | SIA-4066-1 | TC4066BP | IC: Quad Bilateral Switch |
| IC16 | SIA-7805U-5 | UPC7805H | IC: Voltage Regulator |
| IC17 <br> thrus <br> IC19 | SIA-TL062-1 | TL062CP | IC: Dual Operational Amplifier |
| IC20 | SIA-CP4604-1 | CP4604 | IC: DC-DC converter |
| CP31 <br> thru <br> CP34 | SEC-PS2006-1 | PS2006 ${ }^{\text {B }}$ | Photocoupler |
| D41 | SDS-A54-1 | UPA54E | Diode COM |
| D42 | SDS-A64-1 | UPA64H | Diode COM |
| D43 | SDS-15953-1 | 15953 | Diode SI |
| D44 | SDS-1S953-1 | 15953 | Diode SI |
| R47 <br> thru <br> B50 | RCB-AF330R-1 | RD25S 330K8J | R: FXD CAR $330 \mathrm{k} \mathcal{1} \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R51 <br> thru <br> R56 | RCB-AK1R-1 | RD50S 1 | R: FXD CAR $1 \mathrm{kS} \pm 5 \mathrm{z}$ 1/2W |
| R57 <br> thru <br> R62 | RMF-AB14R6KFJ-1 | RF 1/4N 14.7RתSF | R: FXD Metal FLM $14.6 \mathrm{k} \Omega \pm 1 \% 1 / 4 \mathrm{~W}$ |
| R63 <br> thru <br> R68 | RMF-ABl 50QFG-1 | RF 1/4N 150RRF | R: FXD Metal FLM $150 \Omega \pm 1 \%$ 1/4 W |
| R69 | RCB-AH220K-1 | RD25S 220k8J | $\mathrm{R}: ~ F \mathrm{FXD}$ CAR $220 \mathrm{kS} \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R70 | RCB-AH4R7K-1 | RD25S 4.7\% J | R: FXD CAR $4.7 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R71 | RCB-AH220R-1 | RD25S 220R8J | R: FXD CAR $220 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R72 | RCB-AH4R7K-1 | RD25S 4.7RתJ | R: FXD CAR $4.7 \mathrm{ks} \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R73 | RCB-AH4R7R-1 | RD25S 4.7RתJ | R: FXD CAR $4.7 \mathrm{kS} \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R74 | RCB-AH220K-1 | RD25S 220RתJ | R: FXD CAR $220 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |


| Parts No. | ADVANTEST Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| ${ }^{8} 75$ | RCB-AB220K-1 | ${ }^{\text {RD25S }}$ 220x8 | R: PxD Car $220 \mathrm{kR} \pm 581 / 4 \mathrm{~m}$ |
| 876 | RCB-AE4RTK-1 | RD25S 4.7 TR |  |
| 877 | RCB-AB220x-1 | RD25S 220R8 | R: FTX CAR $220 \mathrm{kc} \pm 551 / \mathrm{Ak}$ |
| 878 | RCB-AB4RTK-1 | RD255 $4.7 \mathrm{7R}$ |  |
| 879 | RCB-AB220\%-1 | RD25S 220x8 | R: FXD CAR $220 \mathrm{kR} \pm 581 / 4 \mathrm{~W}$ |
| R80 | RCB-AR4RTR-1 | RD25S 4.7885 | R: $\operatorname{FSDCAR} 4.7 \mathrm{kR} \pm 58 \mathrm{l}$ 1/4 H |
| $\begin{gathered} \text { R81 } \\ \substack{\text { thru } \\ \text { R83 }} \end{gathered}$ | 8MF-AB10<3J-1 |  | R: FXD Metal FIM $10 \mathrm{ke} \pm 18$ 1/4w |
| 884 | satr-abztej-1 |  |  |
| ${ }^{885}$ | RTP-AB4R7KPJ-1 | ${ }^{\text {R }}$ 1/48 4.7 KSP | R: FxD Metal Fm 4.7 L20 $\pm 17 \mathrm{l} / 1 / 4 \mathrm{~N}$ |
| $\begin{aligned} & \text { R86 } \\ & \text { chru } \\ & \text { R89 } \end{aligned}$ | RCP-AB330-1 | E025s 33085 | R: FEX CAR 330 \& $\pm 581 / 4 \mathrm{w}$ |
| 890 | Rem-Abgrikej-1 | RF 1/489.180 SF | R: FED Metal FIM $9.1 \mathrm{ke} \pm 17 \mathrm{l} / 4 \mathrm{~W}$ |
| ${ }^{\text {R91 }}$ | RMT-AB TREKFJ-1 | RE $1 / 4 \mathrm{M} 7.5 \mathrm{KR}$ SR | R: Fmo metal fim 7.5 be $\pm 151 / 4 \mathrm{~W}$ |
| $\mathrm{R}^{29}$ | RAP-AA18004-1 | TMR4-181 |  |
| ${ }^{893}$ | RAT-AALOK4-1 | TMR4-103 | R: Frocom 10 cos |
| ${ }^{89} 4$ |  | TMR4-103 | R: FXD Con 10 ks |
| 895 | RTs-CDios-1 | RJ6xiore | r: tar cernet 10 lo |
| ${ }^{196}$ | RVR-CD500-1 | RJ685008 | r: var cermet $500 \Omega$ |
| R97 | RTR-CDIOR-1 | RJ6710ks | R: vas CERMET 10 cos |
| R98 | RVR-CD500-1 | R.3685002 |  |
| R99 | RTR-CDIOR-I | RJ6xtoke | R: tar cermet 10 ma |
| 8100 | RVR-CC500-1 | RJ685008 | r: tar cerrmet 5008 |
| 8101 | RVR-CC500-1 | RJ6 65008 | r: var cernet 5008 |
| ${ }^{\text {R102 }}$ | RVR-CD10R-1 | RJ6x10xs | r: var cerrmet 10 ke |
| R103 | Rve-cisoo-1 | RJ6x5008 | r: var cermet $500 \Omega$ |
| R104 | RTR-CD10x-1 | RJ6xiors | R: var cermet 10 kg |
| 8105 | RVR-CD500-1 | RJ685008 | r: var cermet $500 \Omega$ |
| 8106 | RVR-CDIOR-1 | RJ6x10x8 | R: var cermet 10 kg |
| R107 | RVR-CDIK-1 | RJ6zike | B: VAR CERMET 1 bo |
| ${ }^{\text {R108 }}$ | RVR-CD1R-1 | RJ68188 | R: VAR CERMET 1 ks |
| C121 | CTA-AC4RTU25V-1 | 242MES02-475M |  |
| $\mathrm{Cl}^{2} 2$ | CTA-AC4RTV2SV-1 | 242120502-475M | C: FXD. ELect tantai 4.7 uf $\pm 20825 \mathrm{~V}$ |
| $\begin{aligned} & \text { chrvu } \\ & \text { chan } \end{aligned}$ | CRT-ARR470100V-1 | ECQ-E1474 NN | c: Fxd my lar 0.47 we 1000 |
| ${ }^{\text {c129 }}$ | CTa-scivSov-2 | 244M5002-105M | C: Fxd elect tantai 1 uF $\pm 202500$ |
| ${ }^{\text {c130 }}$ | CTA-AC100167-1 | 2424-1602-1064 | C: Exd ELect tantal $104 \mathrm{P} \pm 20216 \mathrm{~V}$ |
| ${ }^{\text {cl31 }}$ | CTA-A S4RTU1OV-1 | 22111002-475M | c: fxo eiect tantai 4.7wf $\pm 007100$ |
| $\begin{aligned} & \text { Cl132 } \\ & \text { chru } \\ & \text { C135 } \end{aligned}$ | CS4-AC ROIU $500 \mathrm{~V}-1$ | 0.010 F 50WV | C: FXD CER $0.01 \mathrm{LTP}+80,-202500$ |
| ${ }^{\text {cl3 }}$ | CTA-AC1U5OV-2 | 244M5002-105M | c: Fxd elect tantai $14 \mathrm{~F} \pm 202500$ |
| ${ }^{\text {cl3 }}$ | CMS-AB1000P50V-1 | 501w5002-102K | C: FXD Mglar 1000pF $\pm 102500$ |
| ${ }^{C 138}$ | CTa-AC1USOT-2 | 244M5002-105M | c: fxd elect tantal 1 [ $\pm 202500$ |
| C139 c140 | CFA-AB2200p50v-1 | 50155002-222k | C: FXD Mryar $2200 \mathrm{pr} \pm 102500$ |
| $\begin{aligned} & \mathrm{Cl} 140 \\ & \text { thru } \\ & \text { C146 } \end{aligned}$ | CTA-AC1050V-2 | 244M5002-105M | C: Fxd elect tantal 1 uF $\pm 202500$ |




TR2730-560
SERIAL OUTPUT
BGJ-010176

| Parts No. | ADVANTEST Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| IC1 | SIT-74LS04-9 | SN74LS04N | IC: Hex Inverter Low Power |
| IC2 | SIT-74LS30-9 | SN74LS30N | IC: 8-Input Positive-NAND Gate Low Power |
| IC3 | SIM-6850-4 | MB8863NM | IC: Asynchronous Interface Adapter |
| IC4 | SIM-4069-1 | TC4069BP | IC: Hex Inverter |
| IC5 | SIT-74LS20-9 | SN74LS20N | IC: Dual 4-Input Postive-NAND Gate Low Power |
| IC6 | SIT-74LS244-9 | SN74LS244N | IC: Octal Buffer/Line Driver/ <br> Line Receiver Low Power |
| IC7 | SIT-74LS74-9 | SN74LS74N. | IC: Dual D-Type Positive-Edge-Triggered Flip Flop with Preset AND Clear Low Power |
| IC8 | SIT-74LS00-9 | SN74LS00N | IC: Quadruple 2-Input Positive NAND Gate Low Power |
| IC9 | SIT-74LS244-9 | SN74LS244N | IC: Octal Buffer/Line Driver/ <br> Line Receiver Low Power |
| IC10 | SIT-7497-1 | SN7497N | IC: Synchronous 6-bit Binary Rate Multiplexer |
| IC11 | SIT-74LS138-9 | SN74LS138N | IC: 3-to-8 Line Decoder/Multiplexer Low Power |
| IC12 | SIT-74LS04-9 | SN74LS04N | IC: Hex Inverter Low Power |
| IC13 | SIT-74LS04-9 | SN74LS04N | IC: Hex Inverter Low Power |
| IC14 | SIT-74LS175-9 | SN74LS175N | IC: Quad D-Type Flip Flop Low Power |
| IC15 | SIT-75188-1 | SN75188N | IC: Quad Line Driver |
| IC16 | SIT-74LSI38-9 | SN74LS138N | IC: 3-to-8 Line Decoder/Multiplexer Low Power |
| IC17 | SIT-75189-1 | SN75189AN | IC: Quad Line Receiver |
| IC18 | SIT-74LS151-9 | SN74LS151N | IC: 1-of-Data Selector/Multiplexer Low Power |
| IC19 |  |  | Not assigned |
| IC20 |  |  | Not assigned |
| Q31 | STN-2SC1815-15 | 2SC1815GR | Transistor SI NPN |
| $\begin{aligned} & \text { Q32 } \\ & \text { thru } \\ & \text { Q34 } \end{aligned}$ |  |  | Not assigned |
| D41 | SDS-1S953-1 | 15953 | Diode SI |
| D42 | SDS-1 S953-1 | 15953 | Diode SI |
| D43 <br> thru <br> D48 |  |  | Not assigned |
| R61 | RAY-AA 10K4-1 | TMR4-103 | R: FXD COM 10 kS |
| R62 | RAY-AA $10 \mathrm{K4-1}$ | TMR 4-103 | R: FXD COM $10 \mathrm{k} \Omega$ |
| R63 | RCB-AK2R2M-1 | RD50S 2.2MSL | R: FXD CAR $2.2 \mathrm{M} \Omega \pm 5 \% 1 / 2 \mathrm{~W}$ |
| R64 | RCB-AB 4R7R-1 | RD25S 4.7RS2J | R: FXD CAR $4.7 \mathrm{k} \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R65 | RCB-AH10K-1 | RD25S 10KSLJ | R: FXD CAR $10 \mathrm{kS2} \pm 5 \%$ 1/4W |
| R66 | RCB-AB180-1 | RD25s 180S 5 | R: FXD CAR $180 \Omega 8 \pm 5 \%$ 1/4W |
| $\begin{aligned} & \text { R67 } \\ & \text { thru } \\ & \text { R69 } \end{aligned}$ |  |  | Not Assigned |
| R70 | RCB-AK330-1 | RD50S 3308N | R: FXD CAR 330 S2 $\pm 5 \%$ 1/2W |
| R71 | RCB-AH330K-1 | RD25S 330RSLJ | R: FXD CAR $330 \mathrm{kSz} \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R72 | RCB-AE330-1 | RD25S 3308J | R: FXD CAR 330 Sk $\pm 5 \%$ 1/4W |
| R73 <br> thru <br> R78 |  |  | Not Assigned |
| R79 <br> thru <br> R81 | RCB-AR330-1 | RD50S 3308J | R: FXD CAR $330 \Omega \pm 5 \% \quad 1 / 2 \mathrm{~W}$ |
| R82 | RCB-AK220-1 | RD50S 220תJ | R: FXD CAR 220 \& $\pm 5 \%$ 1/2W |



| Parts No. | ADVANTEST Stock No. | Mfr Stock No. | Description |
| :---: | :---: | :---: | :---: |
| ICl <br> thru <br> IC3 | SIT-74LS138-9 | SN74LS138N | IC: 3-to-8 Line Decoder/Multiplexer Low Power |
| IC4 | SIA-7905-T-5 | UPC7905H | IC: Voltage Regulator |
| IC5 |  |  | Not assigned |
| IC6 | SIS-74LS244-9 | SN74LS244N | IC: Octal Buffer/Line Driver/ Line Receiver Low Power |
| IC7 | SIT-74LSO4-9 | SN74LSO4N | IC: Hex Inverter Low Power |
| IC8 | SIT-74LS138-9 | SN74LS138N | IC: 3-to-8 Line Decoder/Multiplexer Low Power |
| IC9 | SIT-74LSO8-9 | SN74LSO8N | IC: 3-to-8 Line Decoder/Multiplexer Low Power |
| ICIO | SIT-74LS02-9 | SN74LSO2N | IC: Quadruple 2-Input Positive NOR Gate Low Power |
| ICII | SIT-74LS00-9 | SNT4LSOON | IC: Quadruple 2-Input Positive NAND Gate Low Power |
| 1 Cl 2 | SIT-74LS74-9 | SNT4LS74N | IC: Dual D-Type Positive-Edge-Triggered F1ip Flop with Preset AND Clear Low Power |
| IC13 | SIT-74LS08-9 | SN74LS08N | IC: Quadruple 2-Input Positive AND Gate Low Power |
| IC14 | SIT-74LS374-9 | SN74LS374N | IC: Octal D-Type Flip Flop Low Power |
| IC15 | SIT-74LS244-9 | SN74LS244N | IC: Octal Buffer/Line Driver/ Line Receiver Low Power |
| IC16 | SAM - 2116-6 | MB8116HM | IC: 16 K bit Dynamic RAM |
| IC17 | STM - 2116 -6 | MB8116HM | IC: 16K bit Dynamic Ram |
| IC18 | SIT-74LS244-9 | SN74LS244N | IC: Octal Buffer/Line Driver/ Line Receiver Low Power |
| IC19 | SMAM-2116-6 | MB8116HM | IC: 16 R bit Dynamic RAM |
| IC20 | SM4-2116-6 | MB8116[M | IC: 16K bit Dynamic RAM |
| IC21 | SIT-74LS377-9 | SN74LS377 | IC: Octal D-Type Flip Flop Low Power |
| IC22 | SMM-2116-6 | MB8116HM | IC: 16R bit Dynamic RAM |
| IC23 | SIT-74LS193-9 | SN74LS193N | IC: Synchronous up/down Dual Clock Counter Low Power |
| IC24 | SIT-74LS193-9 | SN74LS193N | IC: Synchronous up/down Dual Clock Counter Low Power |
| IC25 | SMAP-2116-6 | MB8116m | IC: 16R bit Dynamic RaM |
| IC26 | SIT-74LS244-9 | SN74LS244N | IC: Octal Buffer/Line Driver/ Line Receiver Low Power |
| IC27 | SIT-74LS193-9 | SN74LS193N | IC: Synchronous up/down Dual Clock Counter Low Power |
| IC28 | SMM-2116-6 | MB8116HM | IC: 16K bit Dynamic RAM |
| IC29 | SIT-74LS244-9 | SN74LS244N | IC: Octal Buffer/Line Driver/ Line Receiver Low Power |
| IC30 | SIT-74LS393-9 | SN74LS393N | IC: Dual 4-bit Binary Counter Low Power |
| IC31 | SMA-2116-6 | MB8116HM | IC: 16K bit Dynamic RAM |
| IC32 | SIT-74LS244-9 | SN74LS244N | IC: Octal Buffer/Line Driver/ <br> Line Receiver Low Power |
| IC33 | SIT-74LS193-9 | SN74LS193N | IC: Synchronous up/down Dual Clock Counter Low Power |
| R41 <br> thru R44 | RCB-AH470-1 | RD25S 470תJ | R: FXD CAR $470 \Omega \pm 5 \% 1 / 4 \mathrm{~W}$ |
| R45 | RAY-AAIOK4-1 | TMR4-103 | R: $\operatorname{FXD} \operatorname{COM} 10 \mathrm{k} \Omega$ |
| C61 |  |  | Not assigned |
| C62 | CTA-ACIUSOV-2 | 244M5002-105M | C: FXD ELECT TANTAL $1 \mu \mathrm{~F} \pm 20 \%$ SOV |









TR2741A/B/E
TC SCANNER I /II
0017209-003-A


TR2741C/D/E


TR2741A/B/C/D/E
A/D CONVERTER
0017209-005-A
BLM-010166 1/9


TR2741A/B/C/D/E





TR2741A/B/C/D/E
A/D CONVERTER
0017209-010-A


|  | $\underset{\text { CH56 }}{\substack{\text { CH9 }}}$ | $\underset{\text { CHS }}{\text { CH91 }}$ | ${ }_{\text {CH46 }}^{\text {CH66 }}$ | $\mathrm{CH}_{4}^{\mathrm{CH} 61}$ |  | ${ }_{\text {CH16 }}^{\text {CH36 }}$ | $\text { CH1/ } / \text { CH31 }$ | $\mathrm{CH}_{\mathrm{CH} 26}$ | ${ }_{\text {CH/ } / \mathrm{CH21}}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\underset{\substack{\text { CH57 } \\ \text { CH7 }}}{ }$ | ${ }_{\text {CH5 } 2 / 472}$ | ${ }_{C H}^{C} /{ }_{\text {CH67 }}$ | $\mathrm{CH}^{\mathrm{CH}} / \mathrm{CH2}$ |  | $\underset{C H 17 / C H 37}{ }$ |  |  | $\stackrel{\searrow}{\mathrm{CH} 2 / \mathrm{CH}_{22}}$ |  |
|  | $\grave{C H 58}_{\text {CH78 }}$ | $\stackrel{\text { CH53 }}{\text { CH73 }}$ | ${ }_{\text {CH4B }}^{\text {CH68 }}$ | $\sum_{\mathrm{CH} 43} / \mathrm{CH}_{63}$ |  | $\overline{\text { CH18 }} / \overline{\text { CH3 }}$ | $\begin{gathered} \mathrm{CH} 13 / \mathrm{CH}_{33} \\ \hline \end{gathered}$ | $\mathrm{CH} 8 / \mathrm{CH}_{28}$ | $\mathrm{CH} 3 / \mathrm{CH}_{23}$ |  |
|  | $\sum_{\text {CH59 }}$ | $\mathrm{CHSL}_{\mathrm{CH} 74}$ | $\mathrm{CH}_{\mathrm{CH} / \mathrm{CH9}}$ | $\mathrm{CH} 44 / \mathrm{CH} 64$ |  | $\overline{\mathrm{CH} 19 / \mathrm{CH} 39}$ | CH14/ | $\mathrm{CHO}_{\mathrm{CH} 29}$ | $\mathrm{CH}_{/ \mathrm{CH} 24}$ |  |
|  | ${ }_{\text {CH6O }}^{\text {CHBO }}$ | $\mathrm{CH55} / \mathrm{CH} 75$ | $\mathrm{CH} 50 / \mathrm{CH} 70^{\text {人 }}$ | CH45/CH65 |  | $\mathrm{CH}_{20} / \mathrm{CH}_{4} \mathrm{O} \mathrm{O}$ | $\mathrm{CH} 15 / \mathrm{CH} 3 \mathrm{~S}$ | ${\underset{C H}{C H} 10}^{\text {CHO }}$ | $\mathrm{CH} / \mathrm{CH}_{25}$ |  |









TR2731
PRINTER \& POWER
0016209-004-A
BLN-010158 1/2


TR2731
PRINTER \& POWER
BLN-010158 2/2


TR2731


TR2731
CPU BOARD


TR2731
MEMORY
BLN-010160 1/2



TR2731
PANEL SECTION
BLJ-010161



TR2730-010
MEMORY/AUX. FUC.


TR2730-510
GP - IB
0016402-013-D
BGJ - 010170





TR2730-550
ANALOG OUTPUT I
BGJ-010174


TR2730-550
ANALOG OUTPUT II
BLB-010175



TR2730-570
DATA MEMORY
BGJ-010178


TR2730-580
PULSE COUNTER I




TR2730-560
SW BOARD

## APPENDIX

ABBREVIATION LIST
(1) Panel printed letters

| Abbreviation | Function | Description |
| :---: | :---: | :---: |
| ALM DATA | Alarm Data | Selects Alarm Print mode. |
| ALPHA. | Alphabet | Specifies uppercase and lowercase alphabetic character and special characters and symbols. |
| AV | Average | Specifies the primary arithmetic operation (average of specified number of scan data) or secondary arithmetic operation (average of channels in the specified group). |
| AUX. FUNCTION | Auxiliary Function | Specifies alarm comments or secondary arithmetic operations. |
| SCAN CH. | Scan Channel | Specifies the input channel range for log scan. |
| CALL CH. | Call Channel | Specifies the single channel continuous display mode. |
| GND | Ground | Ground terminal |
| LOG INTL | Log Interval | Specifies data logging conditions such as interval mode or interval time for $\log$ scan. |
| MONIT.INTL | Monitor Interval | Specifies interval time for monitor scan. |
| MULT.INTL | Multiple Interval | Specifies the multi-interval mode and output data for each interval channel group after storing data, when the TR2730-570 option card is used. |
| NORM. | Normal | Outputs data in the scan order while storing input data, when the TR2730-570 option card is used. |
| MX | Maximum | Specifies the primary arithmetic operation (maximum of the specified number of scan data) or secondary arithmetic operation (maximum of the specified group). |
| MN | Minimum | Specifies the primary arithmetic operation (minimum of the specified number of scan data) or secondary arithmetic operation (minimum of the specified group). |
| TL | Total | Specifies the total of the specified number of scan data for primary arithmetic operation. |


| Abbreviation | Function | Description |
| :--- | :--- | :--- |
| $\Delta \mathrm{N}$ |  | Specifies inter-channel difference <br> computation for the primary arithmetic <br> operation. <br> $\Delta I$ <br> $\Delta t$ |
| Specifies differences computation from the <br> initial value for the primary arithmetic <br> operation. <br> Specifies the difference computation frcm <br> the preceding measurement data for the <br> primary arithmetic operation. |  |  |

(2) Display characters

| Abbreviation | Function | Description |
| :--- | :--- | :--- |
| Average mode | $\begin{array}{l}\text { a. Indicates that the input average mode is } \\ \text { specified for the Filter function of the } \\ \text { SCAN FORMAT. }\end{array}$ |  |
| b. Indicates that the average of the |  |  |
| specified number of scan data is |  |  |
| specified for the primary arithmetic |  |  |
| operation. |  |  |\(\left.] \begin{array}{l}Indicates that the average of the channels <br>

in the specified group (logged at the same <br>
time) is specified for the secondary <br>
arithmetic operation. <br>
Indicates that the interval mode is set to <br>

All Channel Scan mode during MONIT. INTL\end{array}\right\}\)| programming. |
| :--- |
| Indicates that a computation error is |
| generated in TR2731. |
| Analog output digit select code |


| Abbreviation | Function | Description |
| :---: | :---: | :---: |
| $\pm \because$ | External Interval Junction | Indicates that the interval mode is set to the External Interval mode during LOG INTL programming. |
| FiL | Filter | Indicates that the Filter mode is selected. |
| $i$ | Group Channel | Indicates group channel programming enabled. |
| F | hour | Hour |
| 19 | Internal Reference Junction | Indicates that the internal reference junction compensation is specified for a thermocouple range. |
| LE | Label | Indicates label programming enabled. |
| Mif EFT | Linearize Error | Indicates that the data is outside the linearization capability range. |
| $17 \%$ | $\log$ scan mode | Indicates that the $\log$ scan is specified as the object to be compared during ALARM group channel programming. |
| Liticte | Low Battery | Indicates that the internal battery requires recharging. |
| ¢ | Maximum | Indicates that the maximum of the specified number of scan data is specified for the primary arithmetic operation. |
| C- | Maximum | Indicates that the maximum of the channels in the specified group is specified for the secondary arithmetic operation. |
| TT | Minimum | Indicates that the minimum of the specified number of scan data is specified for the primary arithmetic operation. |
| H1\% | Minimum | Indicates that the minimum of the channels in the specified group is specified for the secondary arithmetic operation. |
|  | Multiple interval mode | Indicates that the Multi-interval is selected for the interval mode during LOG INTL programming. "M" denotes the Multi-interval mode. |
| Hi | Monitor Channel | Indicates that monitor channel number settings is enabled for MONIT. INTL programming. |
| \% | minute | Minute |
| mal | monitor scan mode | Indicates that the monitor scan is selected as the object to be compared during ALARM group channel programming. |
| \%14 | Multiplication | Indicates that multiplication computation is specified for the second ary arithmetic operation. |


| Abbreviation | Function | Description |
| :--- | :--- | :--- |
| monitor/log scan | Indicates that the scan mode is selected, <br> during ALARM group channel programing, in <br> which limit identification is performed |  |
| during monitor scan and, if a limit error is |  |  |
| detected, log scan is automatically started |  |  |
| from that point. |  |  |
| Multiple |  |  |


| Abbreviation | Function | Description |
| :---: | :---: | :---: |
| AV | Average | Indicates the computation results for the primary arithmetic operation (average of the specified number of scan data) or secondary arithmetic operation (average of the shannels in the specified group). |
| DE | Deviation | Indicates that the deviation computation in the specified group is specified for the secondary arithmetic operation. |
| DV | Division | Indicates the division computation is. specified for the secondary arithmetic operation. |
| H | High | Indicates that an upper limit error is generated in the ALARM programming. |
| L | Low | Indicates that a lower limit error is generated in the ALARM programming. |
| ML | Multiplication | Indicates that multiplication computation is specified for the secondary arithmetic operation. |
| MX | Maximum | Indicates the computation results for the primary arithmetic operation (maximum of the specified number of scan data) or secondary arithmetic operation (maximum of the channels in the specified group). |
| MN | Minimum | Indicates the computation results for the primary arithmetic operation (minimum of the specified number of scan data) or secondary arithmetic operation (minimum of the channels in the specified group). |
| PP | Peak to Peak | Indicates that the difference computation between the maximum and minimum in the specified group (logged at the same time) is specified for the secondary arithmetic operation. |
| SB | Subtraction | ```Indicates that subtraction computation is specified for the secondary arithmetic operation.``` |
| SD | Standard Deviation | Indicates that the standard deviation computation within the specified group (logged at the same time) is specified for the secondary arithmetic operation. |
| TL | Total | Indicates that the total computation of the specified number of scan data is specified for the primary arithmetic operation. |


| Abbreviation | Function | Description |
| :--- | :--- | :--- |
| $\Delta N$ |  | Indicates that inter-channel difference |
| $\Delta i$ |  | $(\Delta N)$, difference from the initial value |
| $\Delta t$ |  | $(\Delta I)$, and difference fram the preceding data |
|  |  | $(\Delta t)$ computations are specified for the |
|  |  |  |
|  |  |  |

## 


front view


REAR VIEW


TR2741
EXTERNAL VIEW


REAR VIEW

