Best for evaluation of high-precision electronic components by wide source range and $61 / 2$-digit measurement resolution

- Source and measurement range
6253 Voltage: 0 to $\pm 110 \mathrm{~V}$, Current: 0 to $\pm 2 \mathrm{~A}$
6254 Voltage: 0 to $\pm 20 \mathrm{~V}$, Current: 0 to $\pm 20 \mathrm{~A}$
- $51 / 2$ source digits and $61 / 2$ measurement digits
- High-speed pulse source with the minimum pulse width of $25 \mu \mathrm{~s}$
- Variable slew rate function: $10.00 \mathrm{~V} / \mathrm{s}$ to $99.99 \mathrm{kV} / \mathrm{s}$
- Variable integration function
- Sink-enabled bipolar output
GPIB USB RS232 LAN

Factory option Factory option


# High-resolution and high-throughput source monitor with $51 / 2$ source digits and $61 / 2$ measurement digits 

The DC voltage current source/monitor $6253 / 6254$ can be widely used as power supply for evaluating semiconductors and electronic components in research and development and as power supply for characteristic evaluation systems.
In addition to high-accuracy, high-stability and low-noise performances of our strengths, the 6253/6254 realizes higher precision features such as $51 / 2$-digit source resolution, $61 / 2$-digit measurement resolution and basic accuracy of $\pm 0.02 \%$.
Furthermore, the $6253 / 6254$ can support various applications by the sweep functions, high-speed pulse measurement function with a minimum pulse width of $25 \mu \mathrm{~s}$, the variable integration function and the newly adopted variable slew rate function. USB and GPIB interfaces are mounted as standard, and LAN and RS232 interfaces are available optionally.

6253 Output Range


## Source and Measurement Functions

Voltage source (VS), current source (IS), voltage measurement (VM), current measurement (IM) and resistance measurement (RM) can be selected by specifying the source and measurement functions. The $6253 / 6254$ is equipped with $\mathrm{A} / \mathrm{D}$ twin converters, allowing parallel measurement of voltage and current.

6254 Output Range


Display Screen


Source voltage (VS), source current (IS), limit values (HL/LL), measured voltage (VM) and measurement current (IM) are displayed. Voltage and current can be measured simultaneously.

Time Setting Screen


Time settings are important for pulse or sweep source. The time setting screen on the 6253/6254 allows you to make these settings easier than the former models.

Graph Display Screen


You can easily view measurement results from the graphically displayed measurement memory data.
There are two display options: voltage and current value display and display of the number of memories and measured values.

## Voltage/Current Source Mode

There are four voltage or current source modes: DC, pulse, DC sweep, pulse sweep. Then, the sweep modes are classified into five sweep types: fixed sweep, linear sweep, log sweep, random sweep (arbitrary waveform generation by user programming), multi-slope linear sweep (linear sweep with four selectable step values).


## Variable Slew Rate (SR) Function

The vairable slew rate function allows the rising time and the falling time to be set to any values.
10.00 to $99.99 \mathrm{~V} / \mathrm{s}, 100.0$ to $999.9 \mathrm{~V} / \mathrm{s}$,
1.000 to $9.999 \mathrm{kV} / \mathrm{s}, 10.00$ to $99.99 \mathrm{kV} / \mathrm{s}$

The variable slew rate function is available for current source as well on the 6254 . (The 6253 is supported from software revision B00 or later.)


## HI/LO Limit Separate Setting

In voltage or current source, the HI/LO limit settings are very important. The 6253/6254 has a function that can set the HI and LO limits individually. In addition, for the voltage limit, both HI and LO limits can be set homo-polar. This prevents capacitors or batteries from being over-discharged. Also, it is suitable for evaluating devices such as LDs that are used at a constant current and do not tolerate reverse voltage application.

## Suspend Function

The output OFF state can be selected from three states: STBY (output relay OFF), HiZ (output relay ON and high resistance state), and LoZ (output relay ON and low resistance state). Consequently, unnecessary relay ON/OFF operations can be omitted. Using this function will prevent throughput reduction due to relay operating time, and extend relay lifetime dramatically, increasing product reliability. In addition, the setting of a suspend voltage (voltage in HiZ and LoZ status) can prevent transient current from being generated when connecting voltage sourcing devices such as batteries.

| Output OFF <br> status | Output <br> relay | Output status | Current limit setting value |
| :---: | :---: | :---: | :---: |
| LoZ | ON | Vsus, low <br> resistance | VS: Setting current limit (IL) <br> IS: 3000 digits in the setting <br> current range |
| (10000 digits for the $3 \mu \mathrm{~A}$ range) |  |  |  |$|$| HiZ | ON | Vsus, high <br> resistance | O253: 100 nA |
| :---: | :---: | :---: | :---: |
| STBY | OFF | Open | - |

High-Speed Response


The output response can be switched between Fast and Slow.
When the output response is set to Fast, the 6253/6254 starts up faster than the former models.


## DC/DC Converter Evaluation

The following functions are effective for $\mathrm{DC} / \mathrm{DC}$ converter characteristic test.

- The input current and the output voltage or current can be measured simultaneously by synchronizing two units.
- $\pm$ Source and $\pm$ sink by bipolar output

The $6253 / 6254$ allows 0 V sink which is unavailable by normal electronic load.


## Protection of Overshoot at Capacitive Load

When a capacitive load is connected, overshoot occurs at the rising or falling edge and the DUT may be damaged or the output becomes unstable.
Using the variable slew rate (SR) function will alleviate voltage waveforms and protect overshoot.


## Diode VF Temperature Dependence Evaluation

Pulse current application is effective for power diode characteristic test to avoid the influence of self-heating.
By using the current pulse sweep function and voltage measurement in synchronization with pulses, precise VF characteristic test is available even with large current.


Average Current Measurement [Variable Integration Function]
The integration time can be set arbitrarily from $100 \mu \mathrm{~s}$ to 1000 ms , making it easy to measure the average current consumption of cell phones, LCDs, and other devices.
As any integration time of the AD converter itself can be set and analog integration is adopted, there are no omissions in waveforms differently from digital integration, resulting in precise average measurement.



## Specifications

All accuracy specifications are guaranteed for one year at a temperature of $23 \pm 5^{\circ} \mathrm{C}$ and a relative humidity of $85 \%$ or less.

6253
Voltage source/measurement range:

| Range | Source range | Setting <br> resolution | Measurement range | Measurement <br> resolution |
| :---: | :---: | :---: | :---: | :---: |
| 300 mV | 0 to $\pm 320.000 \mathrm{mV}$ | $5 \mu \mathrm{~V}$ | 0 to $\pm 320.9999 \mathrm{mV}$ | 100 nV |
| 3 V | 0 to $\pm 3.20000 \mathrm{~V}$ | $50 \mu \mathrm{~V}$ | 0 to $\pm 3.209999 \mathrm{~V}$ | $1 \mu \mathrm{~V}$ |
| 10 V | 0 to $\pm 10.0000 \mathrm{~V}$ | $100 \mu \mathrm{~V}$ | 0 to $\pm 10.09999 \mathrm{~V}$ | $10 \mu \mathrm{~V}$ |
| 30 V | 0 to $\pm 32.0000 \mathrm{~V}$ | $500 \mu \mathrm{~V}$ | 0 to $\pm 32.09999 \mathrm{~V}$ | $10 \mu \mathrm{~V}$ |
| 100 V | 0 to $\pm 110.000 \mathrm{~V}$ | 1 mV | 0 to $\pm 110.9999 \mathrm{~V}$ | $100 \mu \mathrm{~V}$ |

Current source/measurement range:

| Range | Source range | Setting <br> resolution | Measurement range | Measurement <br> resolution |
| ---: | :---: | ---: | :---: | :---: |
| $3 \mu \mathrm{~A}$ | 0 to $\pm 3.20000 \mu \mathrm{~A}$ | 50 pA | 0 to $\pm 3.209999 \mu \mathrm{~A}$ | 1 pA |
| $30 \mu \mathrm{~A}$ | 0 to $\pm 32.0000 \mu \mathrm{~A}$ | 500 pA | 0 to $\pm 32.099999 \mathrm{~A}$ | 10 pA |
| $300 \mu \mathrm{~A}$ | 0 to $\pm 320.000 \mu \mathrm{~A}$ | 5 nA | 0 to $\pm 320.9999 \mu \mathrm{~A}$ | 100 pA |
| 3 mA | 0 to $\pm 3.20000 \mathrm{~mA}$ | 50 nA | 0 to $\pm 3.209999 \mathrm{~mA}$ | 1 nA |
| 30 mA | 0 to $\pm 32.0000 \mathrm{~mA}$ | 500 nA | 0 to $\pm 32.09999 \mathrm{~mA}$ | 10 nA |
| 300 mA | 0 to $\pm 320.000 \mathrm{~mA}$ | $5 \mu \mathrm{~A}$ | 0 to $\pm 320.9999 \mathrm{~mA}$ | 100 nA |
| 2 A | 0 to $\pm 2.00000 \mathrm{~A}$ | $50 \mu \mathrm{~A}$ | 0 to $\pm 2.009999 \mathrm{~A}$ | $1 \mu \mathrm{~A}$ |

*1 The measurement resolution with integration time of $5 \mu \mathrm{~s}, 10 \mu \mathrm{~s}, 100 \mu \mathrm{~s}$ and $500 \mu \mathrm{~s}$ will be as follows:

| Integration time | $5 \mu \mathrm{~s}$ | $10 \mu \mathrm{~s}$ | $100 \mu \mathrm{~s}$ | $500 \mu \mathrm{~s}$ |
| :---: | :---: | :---: | :---: | :---: |
| Measurement resolution (digits) | 20 | 10 | 4 | 2 |

Resistance measurement range:

| Range | Measurement range | Measurement resolution |
| :--- | :---: | :---: |
| Determined by voltage range/ <br> current range calculations | $0 \Omega$ to $550 \mathrm{G} \Omega$ | Minimum $0.05 \mu \Omega$ |

Voltage limit (compliance) range:

| Setting range | Setting resolution $^{* 2}$ |
| :---: | :---: |
| 0 V to 320.00 mV | $10 \mu \mathrm{~V}$ |
| 320.01 mV to 3.2000 V | $100 \mu \mathrm{~V}$ |
| 3.2001 V to 10.000 V | 1 mV |
| 10.001 V to 32.000 V | 1 mV |
| 32.001 V to 110.00 V | 10 mV |

Current limit (compliance) range:

| Setting range | Setting resolution $^{2}$ |
| :---: | :---: |
| $0.0010 \mu \mathrm{~A}$ to $3.2000 \mu \mathrm{~A}$ | 100 pA |
| $3.2001 \mu \mathrm{~A}$ to $32.000 \mu \mathrm{~A}$ | 1 nA |
| $32.001 \mu \mathrm{~A}$ to $320.00 \mu \mathrm{~A}$ | 10 nA |
| $320.01 \mu \mathrm{~A}$ to 3.2000 mA | 100 nA |
| 3.2001 mA to 32.000 mA | $1 \mu \mathrm{~A}$ |
| 32.001 mA to 320.00 mA | $10 \mu \mathrm{~A}$ |
| 320.01 mA to 2.0000 A | $100 \mu \mathrm{~A}$ |

*2: Where, (Hi limit value - Lo limit value) $\geq 600$ digits (2000 digits for $3 \mu \mathrm{~A}$ range)

Accuracy: Includes calibration accuracy, 1-day stability, temperature coefficient, and linearity.

Voltage source:

| Range | Accuracy | 1-day stability | Temperature coefficient |
| :---: | :---: | :---: | :---: |
|  | $\pm(\%$ of setting +V$)$ |  | $\pm($ ppm of setting +V$) /{ }^{\circ} \mathrm{C}$ |
| 300 mV | $0.02+150 \mu \mathrm{~V}$ | $0.008+80 \mu \mathrm{~V}$ | $15+15 \mu \mathrm{~V}$ |
| 3 V | $0.02+200 \mu \mathrm{~V}$ | $0.008+100 \mu \mathrm{~V}$ | $15+30 \mu \mathrm{~V}$ |
| 10 V | $0.02+600 \mu \mathrm{~V}$ | $0.008+500 \mu \mathrm{~V}$ | $15+100 \mu \mathrm{~V}$ |
| 30 V | $0.02+2 \mathrm{mV}$ | $0.008+1 \mathrm{mV}$ | $15+300 \mu \mathrm{~V}$ |
| 100 V | $0.02+6 \mathrm{mV}$ | $0.008+5 \mathrm{mV}$ | $15+1 \mathrm{mV}$ |

Voltage limit:

| Range | Accuracy | 1-day stability | Temperature coefficient |
| :---: | :---: | :---: | :---: |
|  | $\pm(\%$ of setting +V$)$ |  | $\pm($ ppm of setting +V$) /{ }^{\circ} \mathrm{C}$ |
| 300 mV | $0.025+250 \mu \mathrm{~V}$ | $0.01+100 \mu \mathrm{~V}$ | $15+30 \mu \mathrm{~V}$ |
| 3 V | $0.025+500 \mu \mathrm{~V}$ | $0.01+300 \mu \mathrm{~V}$ | $15+50 \mu \mathrm{~V}$ |
| 10 V | $0.025+5 \mathrm{mV}$ | $0.01+3 \mathrm{mV}$ | $15+500 \mu \mathrm{~V}$ |
| 30 V | $0.025+5 \mathrm{mV}$ | $0.01+3 \mathrm{mV}$ | $15+500 \mu \mathrm{~V}$ |
| 100 V | $0.025+50 \mathrm{mV}$ | $0.01+20 \mathrm{mV}$ | $15+2 \mathrm{mV}$ |

Voltage limit additional error : When Hi limit is set negative and Lo limit is set positive, an error of $\pm 0.1 \%$ of setting is added.

## Current source:

| Range | Accuracy | 1-day stability | Temperature coefficient |
| ---: | :--- | :--- | :---: |
|  | $\pm(\%$ of setting $+\mathrm{A}+\mathrm{A} \times$ Vo/1 V$)$ |  | $\pm(\mathrm{ppm} \times \mathrm{of} \mathrm{setting}+\mathrm{A}+\mathrm{A}$ <br> $\times$ Vo/ 1 V$) /{ }^{\circ} \mathrm{C}$ |  |
| $3 \mu \mathrm{~A}$ | $0.03+500 \mathrm{pA}+30 \mathrm{pA}$ | $0.01+300 \mathrm{pA}+20 \mathrm{pA}$ | $20+150 \mathrm{pA}+1 \mathrm{pA}$ |
| $30 \mu \mathrm{~A}$ | $0.03+4 \mathrm{nA}+300 \mathrm{pA}$ | $0.01+2.5 \mathrm{nA}+200 \mathrm{pA}$ | $20+1 \mathrm{nA}+10 \mathrm{pA}$ |
| $300 \mu \mathrm{~A}$ | $0.025+40 \mathrm{nA}+3 \mathrm{nA}$ | $0.01+25 \mathrm{nA}+2 \mathrm{nA}$ | $20+10 \mathrm{nA}+100 \mathrm{pA}$ |
| 3 mA | $0.025+350 \mathrm{nA}+30 \mathrm{nA}$ | $0.008+200 \mathrm{nA}+20 \mathrm{nA}$ | $20+100 \mathrm{nA}+1 \mathrm{nA}$ |
| 30 mA | $0.025+3.5 \mu \mathrm{~A}+300 \mathrm{nA}$ | $0.008+2 \mu \mathrm{~A}+200 \mathrm{nA}$ | $20+1 \mu \mathrm{~A}+10 \mathrm{nA}$ |
| 300 mA | $0.03+35 \mu \mathrm{~A}+3 \mu \mathrm{~A}$ | $0.01+20 \mu \mathrm{~A}+2 \mu \mathrm{~A}$ | $20+10 \mu \mathrm{~A}+100 \mathrm{nA}$ |
| 2 A | $0.04+350 \mu \mathrm{~A}+30 \mu \mathrm{~A}$ | $0.015+250 \mu \mathrm{~A}+20 \mu \mathrm{~A}$ | $20+100 \mu \mathrm{~A}+1 \mathrm{~mA}$ |

Current limit:

| Range | Accuracy | 1-day stability | Temperature coefficient |
| ---: | :---: | :---: | :---: |
|  | $\pm(\%$ of setting $+\mathrm{A}+\mathrm{A} \times$ Vo/1 V) |  | $\pm(\mathrm{ppm}$ of setting $+\mathrm{A}+\mathrm{A}$ <br> $\times$ Vo/ 1 V$) /{ }^{\circ} \mathrm{C}$ |
| $3 \mu \mathrm{~A}$ | $0.03+1.5 \mathrm{nA}+30 \mathrm{pA}$ | $0.01+500 \mathrm{pA}+20 \mathrm{pA}$ | $20+200 \mathrm{pA}+1 \mathrm{pA}$ |
| $30 \mu \mathrm{~A}$ | $0.03+10 \mathrm{nA}+300 \mathrm{pA}$ | $0.01+3 \mathrm{nA}+200 \mathrm{pA}$ | $20+1 \mathrm{nA}+10 \mathrm{pA}$ |
| $300 \mu \mathrm{~A}$ | $0.03+100 \mathrm{nA}+3 \mathrm{nA}$ | $0.01+30 \mathrm{nA}+2 \mathrm{nA}$ | $20+10 \mathrm{nA}+100 \mathrm{pA}$ |
| 3 mA | $0.03+1 \mu \mathrm{~A}+30 \mathrm{nA}$ | $0.01+300 \mathrm{nA}+20 \mathrm{nA}$ | $20+100 \mathrm{nA}+1 \mathrm{nA}$ |
| 30 mA | $0.03+10 \mu \mathrm{~A}+300 \mathrm{nA}$ | $0.01+3 \mu \mathrm{~A}+200 \mathrm{nA}$ | $20+1 \mu \mathrm{~A}+10 \mathrm{nA}$ |
| 300 mA | $0.05+100 \mu \mathrm{~A}+3 \mu \mathrm{~A}$ | $0.015+30 \mu \mathrm{~A}+2 \mu \mathrm{~A}$ | $20+10 \mu \mathrm{~A}+100 \mathrm{nA}$ |
| 2 A | $0.06+1 \mathrm{~mA}+30 \mu \mathrm{~A}$ | $0.03+300 \mu \mathrm{~A}+20 \mu \mathrm{~A}$ | $20+100 \mu \mathrm{~A}+1 \mathrm{~mA}$ |

Vo: Compliance voltage
Voltage measurement: (Auto zero: ON, integration time: 1PLC to 200ms)

| Range | Accuracy |  | 1-day stability |
| :---: | :---: | :---: | :---: |
|  | $\pm(\%$ of reading +V$)$ |  | $\pm($ Pppm of reading +V$) /{ }^{\circ} \mathrm{C}$ |
| 300 mV | $0.02+120 \mu \mathrm{~V}$ | $0.006+60 \mu \mathrm{~V}$ | $15+12 \mu \mathrm{~V}$ |
| 3 V | $0.02+120 \mu \mathrm{~V}$ | $0.006+80 \mu \mathrm{~V}$ | $15+15 \mu \mathrm{~V}$ |
| 10 V | $0.02+500 \mu \mathrm{~V}$ | $0.006+200 \mu \mathrm{~V}$ | $15+50 \mu \mathrm{~V}$ |
| 30 V | $0.02+1.2 \mathrm{mV}$ | $0.006+800 \mu \mathrm{~V}$ | $15+150 \mu \mathrm{~V}$ |
| 100 V | $0.02+5 \mathrm{mV}$ | $0.006+2 \mathrm{mV}$ | $15+500 \mu \mathrm{~V}$ |

Current measurement: (Auto zero: ON, integration time: 1PLC to 200 ms )

| Range | Accuracy | 1-day stability | Temperature coefficient |
| ---: | :--- | :--- | :---: |
|  | $\pm(\%$ of reading $+\mathrm{A}+\mathrm{A} \times \mathrm{Vo} / 1 \mathrm{~V})$ |  | $\pm(\mathrm{ppm}$ of reading $+\mathrm{A}+\mathrm{A}$ <br> $\times$ Vo $/ 1 \mathrm{~V}) /{ }^{\circ} \mathrm{C}$ |  |
| $3 \mu \mathrm{~A}$ | $0.025+500 \mathrm{pA}+30 \mathrm{pA}$ | $0.01+300 \mathrm{pA}+20 \mathrm{pA}$ | $20+100 \mathrm{pA}+1 \mathrm{pA}$ |
| $30 \mu \mathrm{~A}$ | $0.025+4 \mathrm{nA}+300 \mathrm{pA}$ | $0.01+2.5 \mathrm{nA}+200 \mathrm{pA}$ | $20+500 \mathrm{pA}+10 \mathrm{pA}$ |
| $300 \mu \mathrm{~A}$ | $0.025+35 \mathrm{nA}+3 \mathrm{nA}$ | $0.01+25 \mathrm{nA}+2 \mathrm{nA}$ | $20+5 \mathrm{nA}+100 \mathrm{pA}$ |
| 3 mA | $0.025+300 \mathrm{nA}+30 \mathrm{nA}$ | $0.01+200 \mathrm{nA}+20 \mathrm{nA}$ | $20+40 \mathrm{nA}+1 \mathrm{nA}$ |
| 30 mA | $0.025+3 \mu \mathrm{~A}+300 \mathrm{nA}$ | $0.01+2 \mu \mathrm{~A}+200 \mathrm{nA}$ | $20+400 \mathrm{nA}+10 \mathrm{nA}$ |
| 300 mA | $0.03+30 \mu \mathrm{~A}+3 \mu \mathrm{~A}$ | $0.01+20 \mu \mathrm{~A}+2 \mu \mathrm{~A}$ | $20+4 \mu \mathrm{~A}+100 \mathrm{nA}$ |
| 2 A | $0.04+300 \mu \mathrm{~A}+30 \mu \mathrm{~A}$ | $0.015+250 \mu \mathrm{~A}+20 \mu \mathrm{~A}$ | $20+40 \mu \mathrm{~A}+1 \mathrm{~mA}$ |

Maximum output current: $\pm 2 \mathrm{~A}$ at $\pm 32 \mathrm{~V}$
$\pm 1 \mathrm{~A}$ at $\pm 64 \mathrm{~V}$
$\pm 0.5 \mathrm{~A}$ at $\pm 110 \mathrm{~V}$
Maximum compliance voltage: $\pm 110 \mathrm{~V}$ at $\pm 0.5 \mathrm{~A}$
$\pm 64 \mathrm{~V}$ at $\pm 1 \mathrm{~A}$
$\pm 32 \mathrm{~V}$ at $\pm 2 \mathrm{~A}$
6254
Voltage source/measurement range:

| Range | Source range | Setting <br> resolution | Measurement range | Measurement <br> resolution ${ }^{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| 300 mV | 0 to $\pm 320.000 \mathrm{mV}$ | $5 \mu \mathrm{~V}$ | 0 to $\pm 320.9999 \mathrm{mV}$ | 100 nV |
| 3 V | 0 to $\pm 3.20000 \mathrm{~V}$ | $50 \mu \mathrm{~V}$ | 0 to $\pm 3.209999 \mathrm{~V}$ | $1 \mu \mathrm{~V}$ |
| 20 V | 0 to $\pm 20.0000 \mathrm{~V}$ | $200 \mu \mathrm{~V}$ | 0 to $\pm 20.09999 \mathrm{~V}$ | $10 \mu \mathrm{~V}$ |

Current source/measurement range:

| Range | Source range | Setting <br> resolution | Measurement range | Measurement <br> resolution |
| ---: | :---: | :---: | :---: | :---: |
| $300 \mu \mathrm{~A}$ | 0 to $\pm 320.000 \mu \mathrm{~A}$ | 5 nA | 0 to $\pm 320.9999 \mu \mathrm{~A}$ | 100 pA |
| 3 mA | 0 to $\pm 3.20000 \mathrm{~mA}$ | 50 nA | 0 to $\pm 3.209999 \mathrm{~mA}$ | 1 nA |
| 30 mA | 0 to $\pm 32.0000 \mathrm{~mA}$ | 500 nA | 0 to $\pm 32.09999 \mathrm{~mA}$ | 10 nA |
| 300 mA | 0 to $\pm 320.000 \mathrm{~mA}$ | $5 \mu \mathrm{~A}$ | 0 to $\pm 320.9999 \mathrm{~mA}$ | 100 nA |
| 3 A | 0 to $\pm 3.20000 \mathrm{~A}$ | $50 \mu \mathrm{~A}$ | 0 to $\pm 3.209999 \mathrm{~A}$ | $1 \mu \mathrm{~A}$ |
| 20 A | 0 to $\pm 20.00000 \mathrm{~A}$ | $500 \mu \mathrm{~A}$ | 0 to $\pm 20.009999 \mathrm{~A}$ | $10 \mu \mathrm{~A}$ |

*3: The measurement resolution with integration time of $5 \mu \mathrm{~s}, 10 \mu \mathrm{~s}, 100 \mu \mathrm{~s}$ and $500 \mu \mathrm{~s}$ will be as follows:

| Integration time | $5 \mu \mathrm{~s}$ | $10 \mu \mathrm{~s}$ | $100 \mu \mathrm{~s}$ | $500 \mu \mathrm{~s}$ |
| :---: | :---: | :---: | :---: | :---: |
| Measurement resolution (digits) | 20 | 10 | 4 | 2 |

## Resistance measurement range:

| Range | Measurement range | Measurement resolution |
| :--- | :---: | :---: |
| Determined by voltage range/ <br> current range calculations | $0 \Omega$ to $1 \mathrm{G} \Omega$ | Minimum $0.005 \mu \Omega$ |

## Voltage limit (compliance) range:

| Setting range | Setting resolution $^{+4}$ |
| :---: | :---: |
| 0 V to 320.00 mV | $10 \mu \mathrm{~V}$ |
| 320.01 mV to 3.2000 V | $100 \mu \mathrm{~V}$ |
| 3.2001 V to 20.000 V | 1 mV |

Current limit (compliance) range:

| Setting range | Setting resolution $^{4}$ |
| :---: | :---: |
| $000.10 \mu \mathrm{~A}$ to $320.00 \mu \mathrm{~A}$ | 10 nA |
| $320.01 \mu \mathrm{~A}$ to 3.2000 mA | 100 nA |
| 3.2001 mA to 32.000 mA | $1 \mu \mathrm{~A}$ |
| 32.001 mA to 320.00 mA | $10 \mu \mathrm{~A}$ |
| 320.01 mA to 3.2000 A | $100 \mu \mathrm{~A}$ |
| 3.2001 A to 20.000 A | 1 mA |

*4: Where, (Hi limit value - Lo limit value) $\geq 600$ digits
Accuracy: Includes calibration accuracy, 1-day stability, temperature coefficient, and linearity.

Voltage source:

| Range | Accuracy | 1-day stability | Temperature coefficient |
| :---: | :---: | :---: | :---: |
|  | $\pm(\%$ of setting +V$)$ |  | $\pm($ ppm of setting +V$) /{ }^{\circ} \mathrm{C}$ |
| 300 mV | $0.02+150 \mu \mathrm{~V}$ | $0.008+80 \mu \mathrm{~V}$ | $15+15 \mu \mathrm{~V}$ |
| 3 V | $0.02+200 \mu \mathrm{~V}$ | $0.008+100 \mu \mathrm{~V}$ | $15+30 \mu \mathrm{~V}$ |
| 20 V | $0.02+600 \mu \mathrm{~V}$ | $0.008+500 \mu \mathrm{~V}$ | $15+100 \mu \mathrm{~V}$ |

Voltage limit:

| Range | Accuracy | 1-day stability | Temperature coefficient |
| :---: | :---: | :---: | :---: |
|  | $\pm(\%$ of setting +V$)$ |  | $\pm($ ppm of setting +V$) /{ }^{\circ} \mathrm{C}$ |
| 300 mV | $0.025+250 \mu \mathrm{~V}$ | $0.01+100 \mu \mathrm{~V}$ | $15+30 \mu \mathrm{~V}$ |
| 3 V | $0.025+500 \mu \mathrm{~V}$ | $0.01+300 \mu \mathrm{~V}$ | $15+50 \mu \mathrm{~V}$ |
| 20 V | $0.025+5 \mathrm{mV}$ | $0.01+3 \mathrm{mV}$ | $15+500 \mu \mathrm{~V}$ |

Voltage limit additional error : When Hi limit is set negative and Lo limit is set positive, an error of $\pm 0.1 \%$ of setting is added.

## Current source:

| Range | Accuracy | 1-day stability | Temperature coefficient |
| ---: | :---: | :---: | :---: |
|  | $\pm(\%$ of setting $+\mathrm{A}+\mathrm{A} \times \mathrm{Vo} / 1 \mathrm{~V})$ |  | $\pm(\mathrm{ppm}$ of setting $+\mathrm{A}+\mathrm{A}$ <br> $\times \mathrm{Vo} / 1 \mathrm{~V}) /{ }^{\circ} \mathrm{C}$ |
| $300 \mu \mathrm{~A}$ | $0.025+40 \mathrm{nA}+3 \mathrm{nA}$ | $0.01+25 \mathrm{nA}+2 \mathrm{nA}$ | $20+10 \mathrm{nA}+100 \mathrm{pA}$ |
| 3 mA | $0.025+350 \mathrm{nA}+30 \mathrm{nA}$ | $0.008+200 \mathrm{nA}+20 \mathrm{nA}$ | $20+100 \mathrm{nA}+1 \mathrm{nA}$ |
| 30 mA | $0.025+3.5 \mu \mathrm{~A}+300 \mathrm{nA}$ | $0.008+2 \mu \mathrm{~A}+200 \mathrm{nA}$ | $20+1 \mu \mathrm{~A}+10 \mathrm{nA}$ |
| 300 mA | $0.025+35 \mu \mathrm{~A}+3 \mu \mathrm{~A}$ | $0.01+20 \mu \mathrm{~A}+2 \mu \mathrm{~A}$ | $20+10 \mu \mathrm{~A}+100 \mathrm{nA}$ |
| 3 A | $0.04+350 \mu \mathrm{~A}+30 \mu \mathrm{~A}$ | $0.02+250 \mu \mathrm{~A}+20 \mu \mathrm{~A}$ | $20+100 \mu \mathrm{~A}+1 \mathrm{~mA}$ |
| 20 A | $0.1+8 \mathrm{~mA}+300 \mu \mathrm{~A}$ | $0.08+3 \mathrm{~mA}+100 \mu \mathrm{~A}$ | $40+1 \mathrm{~mA}+10 \mathrm{~mA}$ |

Current limit:

| Range | Accuracy | 1-day stability | Temperature coefficient |
| ---: | :---: | :---: | :---: |
|  | $\pm(\%$ of setting $+\mathrm{A}+\mathrm{A} \times \mathrm{Vo} / 1 \mathrm{~V})$ |  | $\pm(\mathrm{ppm}$ of setting $+\mathrm{A}+\mathrm{A}$ <br> $\times \mathrm{Vo} / 1 \mathrm{~V}) /{ }^{\circ} \mathrm{C}$ |
| $300 \mu \mathrm{~A}$ | $0.03+100 \mathrm{nA}+3 \mathrm{nA}$ | $0.01+30 \mathrm{nA}+2 \mathrm{nA}$ | $20+10 \mathrm{nA}+100 \mathrm{pA}$ |
| 3 mA | $0.03+1 \mu \mathrm{~A}+30 \mathrm{nA}$ | $0.01+300 \mathrm{nA}+20 \mathrm{nA}$ | $20+100 \mathrm{nA}+1 \mathrm{nA}$ |
| 30 mA | $0.03+10 \mu \mathrm{~A}+300 \mathrm{nA}$ | $0.01+3 \mu \mathrm{~A}+200 \mathrm{nA}$ | $20+1 \mu \mathrm{~A}+10 \mathrm{nA}$ |
| 300 mA | $0.03+100 \mu \mathrm{~A}+3 \mu \mathrm{~A}$ | $0.015+30 \mu \mathrm{~A}+2 \mu \mathrm{~A}$ | $20+10 \mu \mathrm{~A}+100 \mathrm{nA}$ |
| 3 A | $0.05+1 \mathrm{~mA}+30 \mu \mathrm{~A}$ | $0.03+300 \mu \mathrm{~A}+20 \mu \mathrm{~A}$ | $20+100 \mu \mathrm{~A}+1 \mathrm{~mA}$ |
| 20 A | $0.1+15 \mathrm{~mA}+300 \mu \mathrm{~A}$ | $0.08+3 \mathrm{~mA}+100 \mu \mathrm{~A}$ | $40+1 \mathrm{~mA}+10 \mu \mathrm{~A}$ |

Vo: Compliance voltage
Voltage measurement: (Auto zero: ON, integration time: 1PLC to 200ms)

| Range | Accuracy | 1-day stability | Temperature coefficient |
| :---: | :---: | :---: | :---: |
|  | $\pm(\%$ of reading +V$)$ |  | $\pm($ ppm of reading +V$) /{ }^{\circ} \mathrm{C}$ |
| 300 mV | $0.02+60 \mu \mathrm{~V}$ | $0.006+60 \mu \mathrm{~V}$ | $15+12 \mu \mathrm{~V}$ |
| 3 V | $0.02+120 \mu \mathrm{~V}$ | $0.006+80 \mu \mathrm{~V}$ | $15+15 \mu \mathrm{~V}$ |
| 20 V | $0.02+500 \mu \mathrm{~V}$ | $0.006+200 \mu \mathrm{~V}$ | $15+50 \mu \mathrm{~V}$ |

Current measurement: (Auto zero: ON, integration time: 1PLC to 200ms)

| Range | Accuracy |  | 1-day stability |
| ---: | :--- | :--- | :---: | $\left.\begin{array}{c}\text { Temperature coefficient }\end{array}\right]$

$\begin{array}{ll}\text { Maximum output current: } & \pm 20 \mathrm{~A} \text { at } \pm 7 \mathrm{~V} \\ & \pm 7 \mathrm{~A} \text { at } \pm 20 \mathrm{~V} \\ \text { Maximum compliance voltage: } & \pm 20 \mathrm{~V} \text { at } \pm 7 \mathrm{~A}\end{array}$
$\pm 7 \mathrm{~V}$ at $\pm 20 \mathrm{~A}$

6253/6254
Resistance measurement: (Auto zero: ON, integration time: 1PLC to 200ms)

| Condition | Accuracy |
| :--- | :---: |
|  | $\pm(\%$ of reading) <br> $\pm($ digits + digits + digits) |
| Voltage <br> source | Reading error: (Voltage source setting error + Current measurement reading error) <br> Full-scale error:(Voltage source full-scale error digit value + Current measurement <br> full-scale error digit value + CMV error digit value) ${ }^{5}$ |
| Current <br> source | Reading error: (Current source setting error + Voltage measurement reading error) <br> Full-scale error:(Current source full-scale error digit value + Voltage measurement <br> full-scale error digit value + CMV error digit value) ${ }^{5}$ |

## Vo: Compliance voltage

*5: CMV error $=(\mathrm{A} \times \mathrm{Vo} / 1 \mathrm{~V})$; "source or measurement current" $\times$ "source or measurement voltage"/1 V digit value

The full-scale error tolerances listed below are added to the integration time 10 ms to $5 \mu \mathrm{~s}$ and 1 -day stability.

| Measurement range |  | Integration time |  | Unit: digits (at $61 / 2$ digit display) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 10 ms | 1 ms | $500 \mu \mathrm{~s}$ | $100 \mu \mathrm{~s}$ | $10 \mu \mathrm{~s}$ | $5 \mu \mathrm{~s}$ |
| Voltage measurement | 300 mV | 150 | 200 | 400 | 600 | 8000 | 10000 |
|  | 3 V | 50 | 100 | 200 | 300 | 5000 | 8000 |
|  | 10 V | 50 | 100 | 200 | 300 | 5000 | 8000 |
|  | $20 \mathrm{~V} / 30 \mathrm{~V}$ | 50 | 100 | 200 | 300 | 5000 | 8000 |
|  | 100 V | 50 | 100 | 200 | 300 | 5000 | 8000 |
| Current measurement | $3 \mu \mathrm{~A}$ | 600 | 1000 | 1500 | 2000 | 5000 | 10000 |
|  | $30 \mu \mathrm{~A}$ | 200 | 300 | 300 | 300 | 5000 | 10000 |
|  | $300 \mu \mathrm{~A}$ | 100 | 150 | 200 | 300 | 5000 | 8000 |
|  | 3 mA | 100 | 150 | 200 | 300 | 5000 | 8000 |
|  | 30 mA | 100 | 150 | 200 | 300 | 5000 | 8000 |
|  | 300 mA | 100 | 150 | 200 | 300 | 5000 | 8000 |
|  | $2 \mathrm{~A} / 3 \mathrm{~A}$ | 100 | 150 | 200 | 300 | 5000 | 8000 |
|  | 20 A | 100 | 150 | 200 | 300 | 5000 | 8000 |

Source linearity: $\pm 10$ digits or less ( $\pm 60$ digits for $2 \mathrm{~A} / 3 \mathrm{~A}$ and $\pm 80$ digits for 20 A )
Output noise: For voltage source, within the range from no load to the maximum load [Vp-p]
For current source, at the following load [Ap-p]
Voltage source:

| Range | Load <br> resistance | Low frequency noise |  | High frequency noise |
| :---: | :---: | :---: | :---: | :---: |
|  |  | DC to 100 Hz | DC to 10 kHz | DC to 20 MHz |
| 300 mV | - | $60 \mu \mathrm{~V}$ | $300 \mu \mathrm{~V}$ | 5 mV |
| 3 V | - | $100 \mu \mathrm{~V}$ | $400 \mu \mathrm{~V}$ | 5 mV |
| 10 V | - | 1 mV | 3 mV | 6 mV |
| $20 \mathrm{~V} / 30 \mathrm{~V}$ | - | 1 mV | 3 mV | 6 mV |
| 100 V | - | 3 mV | 5 mV | 10 mV |

## Current source:

| Range | Load <br> resistance | Low frequency noise |  | High frequency noise |
| ---: | :---: | :---: | :---: | :---: |
|  |  | DC to 10 kHz | DC to 20 MHz |  |
| $3 \mu \mathrm{~A}$ | $10 \mathrm{k} \Omega$ | 10 nA | 60 nA | 500 nA |
| $30 \mu \mathrm{~A}$ | $10 \mathrm{k} \Omega$ | 10 nA | 60 nA | 500 nA |
| $300 \mu \mathrm{~A}$ | $10 \mathrm{k} \Omega$ | 30 nA | 150 nA | 600 nA |
| 3 mA | $1 \mathrm{k} \Omega$ | 200 nA | $2 \mu \mathrm{~A}$ | $6 \mu \mathrm{~A}$ |
| 30 mA | $1 \mathrm{k} \Omega$ | $2 \mu \mathrm{~A}$ | $15 \mu \mathrm{~A}$ | $20 \mu \mathrm{~A}$ |
| 300 mA | $1 \mathrm{k} \Omega$ | $20 \mu \mathrm{~A}$ | $100 \mu \mathrm{~A}$ | $150 \mu \mathrm{~A}$ |
| $2 \mathrm{~A} / 3 \mathrm{~A}$ | $100 \Omega$ | $200 \mu \mathrm{~A}$ | 1 mA | 1.5 mA |
| 20 A | $10 \Omega$ | 2 mA | 10 mA | 15 mA |

## Switching noise:

|  |  | Typical value [p-p] | Load resistance |
| :---: | :---: | :---: | :---: |
| Output ON/OFF noise | Voltage source | 600 mV | At $100 \mathrm{k} \Omega$ |
|  | Current source | 600 mV |  |
| Range switching noise | Voltage source | 50 mV | - |
|  | Voltage limit | $50 \mathrm{mV}{ }^{\text {6 }}$ |  |
|  | Voltage measurement | $50 \mathrm{mV}{ }^{6}$ |  |
|  | Current source | 700 digits $+50 \mathrm{mV}{ }^{7}$ |  |
|  | Current measurement |  |  |
|  | Current limit |  |  |
| Power OFF noise |  | 600 mV | At $100 \mathrm{k} \Omega$ |

*6: The limit operation is inactive. While the limit operation is active, it is the same as the current source range switching noise.
*7: "digits" indicates current source values at $51 / 2$ digits.
Settling time: Time to reach the final value $\pm 0.1 \%$
Under the conditions of pure resistance load, load capacitance of 2.5 pF or less, full-scale compliance settings.

For voltage source in the 100 V range, the output current should be less than $20 \%$ or less of the limit setting values.

| (Typical value) | Source range | Limit range | Output response |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | FAST | SLOW |
| Voltage source | 300 mV | $2 \mathrm{~A} / 20 \mathrm{~A}$ | $100 \mu \mathrm{~s}$ | 1 ms |
|  | 3 V |  |  |  |
|  | 10 V |  |  |  |
|  | 20 V | 3 A | $200 \mu \mathrm{~s}$ | 2 ms |
|  | 30 V | 2 A | 200 s | 2 ms |
|  | 100 V | 300 mA | 300 s | 3 ms |
| Current source | $3 \mu \mathrm{~A}$ | $100 \mathrm{~V} / 20 \mathrm{~V}$ | 10 ms |  |
|  | $30 \mu \mathrm{~A}$ |  | 5 ms |  |
|  | $300 \mu \mathrm{~A}$ |  |  | 5 ms |
|  | 3 mA |  | 2 ms |  |
|  | 30 mA |  | $800 \mu \mathrm{~s}$ |  |
|  | 300 mA |  |  |  |
|  | $2 \mathrm{~A} / 3 \mathrm{~A}$ | $30 \mathrm{~V} / 20 \mathrm{~V}$ |  |  |
|  | 20 A | 30 V |  |  |

Overshoot: $\pm 5 \%$ or less under pure resistance load and at the standard cable end $(3 \mu \mathrm{~A}, 30 \mu \mathrm{~A}, 300 \mu \mathrm{~A}, 3 \mathrm{~A}$ and 20 A ranges excluded)

Line regulation: $\pm 0.003 \%$ of range or less
Load regulation: Voltage source: $\pm 0.003 \%$ of range or less
(At 4-wire connection under the maximum load)
Current source: Depending on the accuracy CMV (A $\times$ Vo/1V)
Output resistance: At 4-wire connection, not including the output cable
Maximum load capacitance: Maximum load capacitance that does not generate oscillation in voltage source or voltage limit status

| Output resistance ( $\Omega$ ) |  |  | Maximum load capacitance |
| :---: | :---: | :---: | :---: |
| Current range | Voltage source | Current source |  |
| $3 \mu \mathrm{~A}$ | $3 \Omega$ or less | $10 \mathrm{G} \Omega$ or higher | $1 \mu \mathrm{~F}$ |
| $30 \mu \mathrm{~A}$ | $500 \mathrm{~m} \Omega$ or less | $1000 \mathrm{M} \Omega$ or higher | $1 \mu \mathrm{~F}$ |
| $300 \mu \mathrm{~A}$ | $100 \mathrm{~m} \Omega$ or less | $1000 \mathrm{M} \Omega$ or higher | $1 \mu \mathrm{~F}$ |
| 3 mA | $10 \mathrm{~m} \Omega$ or less | $100 \mathrm{M} \Omega$ or higher | $100 \mu \mathrm{~F}$ |
| 30 mA | $10 \mathrm{~m} \Omega$ or less | $10 \mathrm{M} \Omega$ or higher | $100 \mu \mathrm{~F}$ |
| 300 mA | $10 \mathrm{~m} \Omega$ or less | $1 \mathrm{M} \Omega$ or higher | $2000 \mu \mathrm{~F}$ |
| $2 \mathrm{~A} / 3 \mathrm{~A}$ | $10 \mathrm{~m} \Omega$ or less | $100 \mathrm{k} \Omega$ or higher | $2000 \mu \mathrm{~F}$ |
| 20 A | $10 \mathrm{~m} \Omega$ or less | $10 \mathrm{k} \Omega$ or higher | $2000 \mu \mathrm{~F}$ |

Supplied cable resistance: $100 \mathrm{~m} \Omega$ or less
Maximum inductive load: Maximum inductive load that does not generate oscillation in current source or current limit status

| Current source range/ <br> current limit range |  | $3 \mu \mathrm{~A}, 30 \mu \mathrm{~A}$ | $300 \mu \mathrm{~A}$ | 3 mA to 2 A |
| :--- | :---: | :---: | :---: | :---: |
|  | Response |  |  |  |
| Maximum inductive load | FAST | $100 \mu \mathrm{H}$ | $200 \mu \mathrm{H}$ | $500 \mu \mathrm{H}$ |
|  | SLOW | $100 \mu \mathrm{H}$ | $500 \mu \mathrm{H}$ | 1 mH |

Effective CMRR: At unbalanced impedance $1 \mathrm{k} \Omega$
In DC and at AC $50 / 60 \mathrm{~Hz} \pm 0.08 \%$

|  |  | Integration time |  |
| :--- | :---: | :---: | :---: |
|  |  | $5 \mu \mathrm{~s}$ to 10 ms | 1 PLC to 200 ms |
| Current measurement/ | 6253 | 60 dB | 120 dB |
| voltage measurement | 6254 | 50 dB | 110 dB |

NMRR: At AC $50 / 60 \mathrm{~Hz} \pm 0.08 \%$

|  | Integration time |  |
| :--- | :---: | :---: |
|  | $5 \mu \mathrm{~s}$ to 10 ms | 1 PLC to 200 ms |
| Voltage measurement/current <br> measurement | 0 dB | 60 dB |

## Source and Measurement Function

DC source and measurement: DC voltage and current source and measurement
Pulse source and measurement:Source and measurement of pulse voltage and current
(However, measurement auto range in pulse source is impossible.)

DC sweep source and measurement: Source and measurement by Linear, Multislope linear, Log, Random and Fixed level

Pulse sweep source and measurement: Source and measurement by Linear, Multislope linear, Log, Random and Fixed level (However, measurement auto range in pulse source is impossible.)

Source value monitor: Monitoring source values of DC voltage and current (Measured separately from the measurement function)
Integration time: $\quad 10$ types available: $5 \mu \mathrm{~s}, 10 \mu \mathrm{~s}, 100 \mu \mathrm{~s}, 500 \mu \mathrm{~s}, 1 \mathrm{~ms}$, $10 \mathrm{~ms}, 1$ PLC, 2 PLC, 200 ms and arbitrary value (variable integration)
(PLC: Power Line Cycle, $50 \mathrm{~Hz}: 20 \mathrm{~ms}, 60 \mathrm{~Hz}: 16.66 \mathrm{~ms}$ )
Variable integration setting range: $100 \mu$ s to 1000 ms (setting resolution: $100 \mu \mathrm{~s}$ )
Sweep mode:
Reverse ON (round) / OFF (one way)
Sweep repeat count:
1 to 1,000 times or infinite
Maximum number of sweep steps: 20,000 steps
Maximum random sweep memory: 20,000 data
Sampling count: 1 to 20,000 times
(Plural samplings done by single trigger)
(Valid only in the HOLD status of the DC or pulse mode)
Measurement data memory: 20,000 data
Measurement auto range: Available only in VSIM or ISVM
Measurement function link mode: Links the measurement function to the source function. VSIM or ISVM, ON/OFF available

Limit: $\quad$ The HI and LO limits can be set individually. (However, current limits of the same polarity are not allowed.)

Calculation function: NULL calculation
Comparator calculation (HI, GO, or LO)
Scaling calculation
MAX, MIN, AVE, TOTAL calculations
Trigger style: Auto trigger, External trigger
Output terminal: Front safety socket
Rear HI OUTPUT, HI SENSE, LO OUTPUT, LO SENSE, DRIVING GUARD

Maximum input voltage: 6253110 V peak (between HI-LO, DG-LO)
3 V peak (between OUTPUT and SENSE)
1 V peak (between HI and DG )
500 V max (between LO and chassis)
625420 V peak (between HI-LO)
3 V peak (between OUTPUT and SENSE)
250 V max (between LO and chassis)
Maximum remote sensing voltage: $\pm 3 \mathrm{~V}$ max
HI OUTPUT - HI SENSE, LO OUTPUT - LO SENSE
(The voltage between HI OUTPUT and LO OUTPUT must be within the maximum output voltage range.)

Voltage measurement input resistance: $625310 \mathrm{G} \Omega$ or higher $62541 \mathrm{G} \Omega$ or higher

Voltage measurement input leak current: $6253 \pm 100 \mathrm{pA}$ or lower $6254 \pm 2$ nA or lower

## Interface Function

USB interface: USB 2.0 Full-speed, Type B connector
GPIB interface: Compliant with IEEE-488.2
Amphenol 24 pin connector
Interface function SH1, AH1, T6, L4, SR1, RL1, PP0, DC1, DT1, C0, E2
RS232 interface (factory option): 6253+03, 6254+03
Compliant with EIA232C (RS-232)
Baud rate 19200, 9600, 4800, 2400, 1200, 600, 300
Parity EVEN, ODD, NONE
Number of data bits 7 bits, 8 bits
Number of stop bits
1 bit, 2 bits
Dsub 9 pin connector
LAN interface (factory option): 6253+06, 6254+06
Compliant with IEEE802.3
10BASE-T, 100BASE-TX
RJ-45 connector
External control signal: TRIGGER IN
SYNC OUT
COMPLETE OUT, BUSY IN, BUSY OUT
ININTERLOCK, STBY IN, OPR/STBY IN, OPR/SUS IN,
OPERATE OUT
BNC connector

## Setting Time

Minimum pulse width: $\quad 25 \mu s$
Minimum step (repeat) time: Under fixed source/measurement range, integration time of $5 \mu \mathrm{~s}$, the minimum measurement or source delay time, calculation function OFF, auto zero OFF, and voltage/current measurement

| Measurement |  |  | Source mode |
| :---: | :---: | :---: | :---: |
| OFF | Common | OFF, Normal | $125 \mu \mathrm{~s}$ |
|  |  | Burst | $50 \mu \mathrm{~s}$ |
| ON | DC, pulse | OFF, Normal | $500 \mu \mathrm{~s}{ }^{* 8}$ |
|  | Sweep | Burst | $50 \mu \mathrm{~s}$ |
|  |  | OFF, Normal | $500 \mu \mathrm{~s}{ }^{* 8}$ |

*8: $600 \mu$ s when the calculation function is OFF
Source delay time:

| Setting range | Resolution $^{\bullet 9}$ | Setting accuracy |
| :---: | :---: | :---: |
| 0.005 ms to 60.000 ms | $1 \mu \mathrm{~s}$ |  |
| 60.01 ms to 600.00 ms | $10 \mu \mathrm{~s}$ | $\pm(0.1 \%+10 \mu \mathrm{~s})$ |
| 600.1 ms to 6000.0 ms | $100 \mu \mathrm{~s}$ |  |
| 6001 ms to 59997 ms | 1 ms |  |

Period (pulse cycle):

| Setting range | Resolution ${ }^{\circ 9}$ | Setting accuracy |
| :---: | :---: | :---: |
| 0.050 ms to 60.000 ms | $1 \mu \mathrm{~s}$ |  |
| 60.01 ms to 600.00 ms | $10 \mu \mathrm{~s}$ | $\pm(0.1 \%+10 \mu \mathrm{~s})$ |
| 600.1 ms to 6000.0 ms | $100 \mu \mathrm{~s}$ |  |
| 6001 ms to 60000 ms | 1 ms |  |

Pulse width:

| Setting range | Resolution $^{\bullet 9}$ | Setting accuracy |
| :---: | :---: | :---: |
| 0.025 ms to 60.000 ms | $1 \mu \mathrm{~s}$ |  |
| 60.01 ms to 600.00 ms | $10 \mu \mathrm{~s}$ | $\pm(0.1 \%+10 \mu \mathrm{~s})$ |
| 600.1 ms to 6000.0 ms | $100 \mu \mathrm{~s}$ |  |
| 6001 ms to 59997 ms | 1 ms |  |

Measurement delay time:

| Setting range | Resolution $^{\circ 9}$ | Setting accuracy |
| :---: | :---: | :---: |
| 0.020 ms to 60.000 ms | $1 \mu \mathrm{~s}$ | $\pm$$\pm(0.1 \%+10 \mu \mathrm{~s})$ <br>  |
| 600.1 ms to 6000.0 ms | $100 \mu \mathrm{~s}$ |  |
| 6001 ms to 59997 ms | 1 ms |  |

*9: The setting resolution is determined by the period time resolution.
Hold time:

| Setting range | Resolution | Setting accuracy |
| :---: | :---: | :---: |
| 0 ms to 6000.0 ms | $100 \mu \mathrm{~s}$ | $\pm(2 \%+2 \mathrm{~ms})$ |

Auto range delay time:

| Setting range | Resolution | Setting accuracy |
| :---: | :---: | :---: |
| 0 ms to 5000.0 ms | $100 \mu \mathrm{~s}$ | $\pm(2 \%+2 \mathrm{~ms})$ |

## General Specifications

Operating environment: Temperature: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
Relative humidity: $85 \%$ or less, no condensation The operating temperature environment is limited at sink.
Storage environment: Temperature: $-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Relative humidity: $85 \%$ or less, no condensation
Warm-up time: 60 minutes or more
Display: 4.3-inch color LCD display
Power supply: AC power supply $100 \mathrm{~V} / 120 \mathrm{~V} / 220 \mathrm{~V} / 240 \mathrm{~V}$ (User selectable)

| Option number | Standard | OPT. 32 | OPT. 42 | OPT. 44 |
| :---: | :---: | :---: | :---: | :---: |
| Power voltage | 100 V | 120 V | 220 V | 240 V |

Use a power cable and a fuse that are compliant with the safety standard when changing the power supply voltage.

| Line frequency: $\quad 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Power consumption: | 6253330 VA or less |  |  |  |  |
|  | 6254320 VA or less |  |  |  |  |
| Dimensions: | 6253 Approx. 212 (W) x 177 (H) x 450 (D) mm |  |  |  |  |
|  | 6254 Approx. 212 (W) x 177 (H) x 500 (D) mm |  |  |  |  |
| Mass: | 625315 kg or |  |  |  |  |
|  | 625413 kg or less |  |  |  |  |
| Safety: Compliant with IEC61010-1 Ed. 3 |  |  |  |  |  |
| EMC: EN61326-1 cla |  |  |  |  |  |
| Vibration proof: Compliant with IEC60068-2-6 |  |  |  |  |  |
| Supplied accessories |  |  |  |  |  |
| Name |  |  |  | Model | Quantity |
| Power cable |  |  |  | A01402 | 1 |
| Input/output cable (red and black safety cable 1m) 6253 only |  |  |  | A01044 | 1 |
| Input/output cable (red and black safety cable, large current, 1m) 6254 only |  |  |  | CC010011 | 1 |
| Banana tip adapter (red and black) |  |  |  | A08531 | 1 |
| Alligator clip adapter (red and black) 6253 only |  |  |  | A08532 | 1 |
| Alligator clip adapter (red and black, large current) 6254 only |  |  |  | CC015007 | 1 |
| Output connector (plug) 6253 only |  |  |  | JCS-RB0005JX04 | 1 |
| Output connector (plug) cover 6253 only |  |  |  | YEE-1000734 | 1 |
| Cable tie 6253 only |  |  |  | ESM-000257 | 1 |

## Optional accessories

| Name | Model |
| :--- | :--- |
| Test fixture | 12701 A |
| Input cable (1 m) | A01041 |
| Input/output cable (red and black safety cable 1m) | A01044 |
| Input/output cable (red and black safety cable, large current, 1m) | CC010011 |
| Banana tip adapter (red and black) | A08531 |
| Alligator clip adapter (red and black) | A08532 |
| Alligator clip adapter (red and black, large current) | CC015007 |
| Input and output cable (banana-banana, 4-wire shielded, 0.5 m) | A01047-01 |
| Input and output cable (banana-banana, 4-wire shielded, 1 m) | A01047-02 |
| Input and output cable (banana-banana, 4-wire shielded, 1.5 m) | A01047-03 |
| Input and output cable (banana-banana, 4-wire shielded, 2 m) | A01047-04 |
| Input and output cable (banana-banana, 4-wire shielded with guard, 1 m) | A01038-100 |
| Input and output cable (5-pin plug - alligator, 1 m) | CC060001-100 |
| Input and output cable (5-pin plug, 2 m) | CC060002-200 |
| Input cable (BNC-BNC, 1.5 m) | A01036-1500 |
| Rack mount set (JIS 4U single) | A02269 |
| Rack mount set (JIS 4U twin) |  |
| Rack mount set (EIA 4U single) | CC022004 |
| Rack mount set (EIA 4U twin) | A02469 |
| Side joint set (4U) | CC024004 |
| Slide rail set | A02641 |
| Front handle set (4U) | A02615 |

*10: Installing a rack or the slide rail set (A02165) is required.
The side joint set (A02641) is required.

## Options

| Name | Model |
| :--- | :---: |
| RS232 interface (factory option) | OPT6253+03 |
|  | OPT6254+03 |
| LAN interface (factory option) | OPT6253+06 |
|  | OPT6254+06 |

- Please read through the operation manual carefully before using the product.
- All specifications are subject to change without notice.


## ADCMT. adC CORPORATION

## E-mail : kcc@adcmt.com URL: https://www.adcmt.com

## Head Office (R\&D Center)

77-1, Miyako Namegawa-machi, Hiki-gun,
Saitama 355-0812, Japan
Phone: +81-493-56-4433 Fax: +81-493-57-1092

## East Branch (Sales Dept.)

Okabe-building, 3-515, Onari-cho, Omiya-ku, Saitama-shi,
Saitama 330-0852, Japan
Phone: +81-48-651-4433 Fax: +81-48-651-4432

